AMS 550.472/672: Graph Theory Homework Problems - Week I

Problems to be handed in on Wednesday, Feb 3, 2016 in class: 3, 7, 9, 11.

1. Let G be a simple graph with n vertices and m edges. Show that $m \leq\binom{ n}{2}$, and determine when equality holds.
2. What is the maximum possible degree in a SIMPLE graph on n vertices ? What is the minimum possible degree ?
3. Show that in any simple graph, there exist two vertices with the same degree.
4. (n-CUBE) Define a graph $Q_{n}(n \geq 1)$, called the n-cube, with vertex set $V\left(Q_{n}\right)$ being the set of all n-tuples of $\{0,1\}$, and two vertices are adjacent if and only if the corresponding tuples differ in exactly 1 coordinate.
(i) Draw $Q_{1}, Q_{2}, Q_{3}, Q_{4}$.
5. The boolean lattice $B L_{n}(n \geq 1)$ is the graph whose vertex set is the set of all subsets of $\{1, \ldots, n\}$, where two subsets X, Y are adjacent if and only if their symmetric difference has precisely one element.
(i) Draw $B L_{1}, B L_{2}, B L_{3}, B L_{4}$.
6. Write the adjacency matrix and incidence matrix for the following graphs:
(i) $V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, E(G)=\left\{e_{1}, e_{2}, e_{3}\right\}, \phi\left(e_{1}\right)=v_{1} v_{2}, \phi\left(e_{2}\right)=v_{1} v_{3}, \phi\left(e_{3}\right)=v_{1} v_{4}$
(ii) The graph with the following drawing:

7. Show that two isomorphic simple graphs have the same number of edges. Show that any isomorphism maps a vertex to another vertex of the same degree.
8. Write the adjacency matrices of the graphs in Problem 1.1.18 in the textbook.
9. Let G be a simple graph with n vertices and A be its $n \times n$ adjacency matrix. Determine a vector $p \in \mathbb{R}^{n}$ such that $q=A p$ is the vector of the degrees, i.e., q_{i} is the degree of vertex i, $i=1, \ldots, n$.
10. Do Problem 1.1.18 from the textbook.
11. Show that for every natural number $n \in \mathbb{N}$, the n-CUBE Q_{n} and the boolean lattice $B L_{n}$ are isomorphic.
12. Determine which pairs of the following graphs are isomorphic. Justify the answer.

13. Determine if the following adjacency matrices are of isomorphic graphs.

$$
\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

14. Let G, H be simple graphs with adjacency matrices $A(G)$ and $A(H)$ respectively. Given just the adjacency matrices, can you see a way to test if G is isomorphic to H ? (Think about permuting rows and columns).
