AMS 550.472/672: Graph Theory Homework Problems - Week I

Problems to be handed in on Wednesday, Feb 3, 2016 in class: 3, 7, 9, 11.

- 1. Let G be a simple graph with n vertices and m edges. Show that $m \leq {n \choose 2}$, and determine when equality holds.
- 2. What is the maximum possible degree in a SIMPLE graph on n vertices ? What is the minimum possible degree ?
- 3. Show that in any simple graph, there exist two vertices with the same degree.
- 4. (*n*-CUBE) Define a graph Q_n $(n \ge 1)$, called the *n*-cube, with vertex set $V(Q_n)$ being the set of all *n*-tuples of $\{0, 1\}$, and two vertices are adjacent if and only if the corresponding tuples differ in exactly 1 coordinate.
 - (i) Draw Q_1, Q_2, Q_3, Q_4 .
- 5. The boolean lattice BL_n $(n \ge 1)$ is the graph whose vertex set is the set of all subsets of $\{1, \ldots, n\}$, where two subsets X, Y are adjacent if and only if their symmetric difference has precisely one element.
 - (i) Draw BL_1, BL_2, BL_3, BL_4 .
- 6. Write the adjacency matrix and incidence matrix for the following graphs:
 - (i) $V(G) = \{v_1, v_2, v_3, v_4\}, E(G) = \{e_1, e_2, e_3\}, \phi(e_1) = v_1v_2, \phi(e_2) = v_1v_3, \phi(e_3) = v_1v_4\}$
 - (ii) The graph with the following drawing:

- 7. Show that two isomorphic *simple* graphs have the same number of edges. Show that any isomorphism maps a vertex to another vertex of the same degree.
- 8. Write the adjacency matrices of the graphs in Problem 1.1.18 in the textbook.
- 9. Let G be a simple graph with n vertices and A be its $n \times n$ adjacency matrix. Determine a vector $p \in \mathbb{R}^n$ such that q = Ap is the vector of the degrees, i.e., q_i is the degree of vertex i, $i = 1, \ldots, n$.
- 10. Do Problem 1.1.18 from the textbook.
- 11. Show that for every natural number $n \in \mathbb{N}$, the *n*-CUBE Q_n and the boolean lattice BL_n are isomorphic.
- 12. Determine which pairs of the following graphs are isomorphic. Justify the answer.

13. Determine if the following adjacency matrices are of isomorphic graphs.

ſ	0	1	1	0	0	0]	Γ0	0	1	0	1	0]
	1	0	1	1	0	0	0	0	0	1	0	1
	1	1	0	0	0	0	1	0	0	0	1	0
	0	1	0	0	1	1	0	1	0	0	0	1
	0	0	0	1	0	1	1	0	1	0	0	1
	0	0	0	1	1	0	0	1	0	1	1	0

14. Let G, H be simple graphs with adjacency matrices A(G) and A(H) respectively. Given just the adjacency matrices, can you see a way to test if G is isomorphic to H? (Think about permuting rows and columns).