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Why study convexity?58

1. Convex optimization: least squares problem (linear regression), compressed sensing, classification.59

2. Farkas’ lemma : Fundamental theorem of asset pricing/No arbitrage theorem. Mention convexity60

assumption in finance for risk measures61

3. Von Neumann’s minimax theorem/existence of Nash equilibria62

4. Statistical learning: nonnegative matrix factorization problem63

5. Helly’s Theorem: At least 1/3rd area cut off, Voting in agreeable societies64

6. Hugely important tool in combinatorial optimization: canonical example – Transshipment problem65

7. Radon’s theorem: VC dimension of halfspaces from statistical learning theory66

1 Definitions and Preliminaries67

We will focus on Rd for arbitrary d ∈ N: x = (x1, . . . , xd) ∈ Rd. We will use the notation Rd+ to denote68

the set of all vectors with nonnegative coordinates. We will also use ei, i = 1, . . . , d to denote the i-th unit69

vector, i.e., the vector which has 1 in the i-th coordinate and 0 in every other coordinate.70

Definition 1.1. A norm on Rd is a function N : Rd → R+ satisfying:71

1. N(x) = 0 if and only if x = 0,72

2. N(αx) = |α|N(x) for all α ∈ R and x ∈ Rd,73

3. N(x + y) ≤ N(x) +N(y) for all x,y ∈ Rd. (Triangle inequality)74

Example 1.2. For any p ≥ 1, define the `p norm on Rd: ‖x‖p = (|x1|p + |x2|p + . . . + |xd|p)
1
p . p = 275

is also called the standard Euclidean norm; we will drop the subscript 2 to denote the standard norm:76

‖x‖ =
√
x2

1 + x2
2 + . . .+ x2

d. The `∞ norm is defined as ‖x‖∞ = maxni=1 |xi|.77

Definition 1.3. Any norm on Rd defines a distance between points in x,y ∈ Rd as dN (x,y) := N(x− y).78

This is called the metric or distance induced by the norm. Such a metric satisfies three important properties:79

1. dN (x,y) = 0 if and only if x = y,80

2. dN (x,y) = dN (y,x) for all x ∈ Rd,81

3. dN (x, z) ≤ dN (x,y) + dN (y, z) for all x,y, z ∈ Rd. (Triangle inequality)82
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Definition 1.4. We also utilize the (standard) inner product of x,y ∈ Rd : 〈x,y〉 = x1y1 +x2y2 + . . .+xdyd.83

(Note that ‖x‖22 = 〈x,x〉). We say x and y are orthogonal if 〈x,y〉 = 0.84

Definition 1.5. For any norm N and x ∈ Rd, r ∈ R+, we will call the set BN (x, r) := {y ∈ Rd : N(y−x) ≤85

r} as the ball around x of radius r. BN (0, 1) will be called the unit ball for the norm N .86

A subset X ⊆ Rd is said to be bounded if there exists R ∈ R such that X ⊆ BN (0, R).87

Definition 1.6. Given any set X ⊆ Rd and a scalar α ∈ R,

αX := {αx : x ∈ X}.

Given any two sets X,Y ⊆ Rd, we define the Minkowski sum of X,Y as

X + Y := {x + y : x ∈ X,y ∈ Y }.

Basic real analysis and topology. For any subset of real numbers S ⊆ R, we recall the concepts of the88

infimum inf S and the supremum supS.89

Fix a norm N on Rd. A set X ⊆ Rd is called open if for every x ∈ X, there exists r ∈ R+ such that90

BN (x, r) ⊆ X. A set X is closed if its complement Rd \X is open.91

Theorem 1.7. 1. ∅,Rd are both open and closed.92

2. An arbitrary union of open sets is open. An arbitrary intersection of closed sets is closed.93

3. A finite intersection of open sets is open. A finite union of closed sets is closed.94

A sequence in Rd is a countable ordered set of points: x1,x2,x3, . . .. We say that the sequence converges95

or that the limit of the sequence exists if there exists a point x such that for every ε > 0, there exists M ∈ N96

such that N(x− xn) ≤ ε for all n ≥M . x is called the limit point, or simply the limit, of the sequence and97

will also sometimes be denoted by limn→∞ xn.98

Theorem 1.8. A set X is closed if and only if for every convergent sequence in X, the limit of the sequence99

is also in X.100

We introduce three important notions:101

1. For any set X ⊆ Rd, the closure of X is the smallest closed set containing X and will be denoted by102

cl(X).103

2. For any set X ⊆ Rd, the interior of X is the largest open set contained inside X and will be denoted104

by int(X).105

3. For any set X ⊆ Rd, the boundary of X is defined as bd(X) := cl(X) \ int(X).106
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Definition 1.9. A set in Rd that is closed and bounded is called compact.107

Theorem 1.10. Let C ⊆ Rd be a compact set. Then every sequence {xi}i∈N contained in C (not necessarily108

convergent) has a convergent subsequence.109

A function f : Rd → Rn is continuous if for every convergent sequence {xn}∞n=1 ⊆ Rd, the following110

holds: limn→∞ f(xn) = f(limn→∞ xn).111

Theorem 1.11. [Weierstrass’ Theorem] Let f : Rd → R be a continuous function. Let X ⊆ Rd be a compact112

subset. Then inf{f(x) : x ∈ X} is attained, i.e., there exists xmin ∈ X such that f(xmin) = inf{f(x) : x ∈113

X}. Similarly, there exists xmax ∈ X such that f(xmax) = sup{f(x) : x ∈ X}.114

Theorem 1.12. Let f : Rd → Rn be a continuous function, and C be a compact set. Then f(C) is compact.115

We will also need to speak of differentiability of functions f : Rd → R.116

Definition 1.13. We say that f : Rd → R is differentiable at x ∈ Rd, if there exists a linear transformation
A : Rd → R such that

lim
h→0

|f(x + h)− f(x)−Ah|
|h| = 0.

If f is differentiable at x, then the linear transformation is unique and is called the gradient of f . It is117

commonly denoted by ∇f(x).118

Definition 1.14. The partial derivative of f at x in the i-th direction is defined as the real number

f ′i(x) := lim
h→0

f(x + hei)− f(x)

h
,

if the limit exists.119

Basic facts about matrices. The set of m× n matrices will be denoted by Rm×n. The rank of a matrix120

A will be denoted by rk(A) – it is the maximum number of linearly independent rows of A, which is equal121

to the maximum number of linearly independent columns of A. When m = n, we say that matrix is square.122

Definition 1.15. A square matrix A ∈ Rn×n is called symmetric if Aij = Aji for all i, j ∈ {1, . . . , n}.123

Definition 1.16. Let A ∈ Rn×n. A vector v ∈ Rn is called an eigenvector of A, if there exists λ ∈ R such124

that Av = λv. λ is called the eigenvalue of A associated with v.125

Theorem 1.17. If A ∈ Rn×n is symmetric then it has n orthogonal eigenvectors v1, . . . ,vn all of unit126

Euclidean norm, with associated eigenvalues λ1, . . . , λn ∈ R. Moreover, if S is the matrix whose columns127

are v1, . . . ,vn and Λ is the diagonal matrix with λ1, . . . , λn as the diagonal entries, then A = SΛST .128

Moreover, rk(A) equals the number of nonzero eigenvalues.129
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Theorem 1.18. Let A ∈ Rn×n be a symmetric matrix of rank r. The following are equivalent.130

1. All eigenvalues of A are nonnegative.131

2. There exists a matrix B ∈ Rr×n with linearly independent rows such that A = BTB.132

3. uTAu ≥ 0 for all u ∈ Rn.133

Definition 1.19. A symmetric matrix A ∈ Rn×n satisfying any of the three conditions in Theorem 1.18 is134

called a positive semidefinite (PSD) matrix. If rk(A) = n, i.e., all its eigenvalues are strictly positive, then135

A is called positive definite.136

Exercise 1. Show that any positive definite matrix A ∈ Rd×d defines a norm on Rd via NA(x) =
√

xTAx.137

This norm is called the norm induced by A.138

2 Convex Sets139

2.1 Definitions and basic properties140

A set X ⊆ Rd is called a convex set if for all x,y ∈ X, the line segment [x,y] lies entirely in X. More141

precisely, for all x,y ∈ X and every λ ∈ [0, 1], λx + (1− λ)y ∈ X.142

Example 2.1. Some examples of convex sets:143

1. In R, the only examples of convex sets are intervals (closed, open, half open): (a, b), (a, b], [a, b], (−∞, b]144

etc.145

2. Let a ∈ Rd and δ ∈ R. The sets H(a, δ) = {x ∈ Rd : 〈a,x〉 = δ}, H+(a, δ) = {x ∈ Rd : 〈a,x〉 ≥ δ} and146

H−(a, δ) = {x ∈ Rd : 〈a,x〉 ≤ δ} are all convex sets. Sets of the form H(a, δ) are called hyperplanes147

and sets of the form H+(a, δ), H−(a, δ) are called halfspaces.148

3. {x ∈ Rd : ‖x‖∞ ≤ 1} is a convex set.149

4. {x = (x1, . . . , xd) ∈ Rd : x1 + x2t+ x3t
2 + . . .+ xdt

d−1 ≥ 0 for all t ≥ 0} is a convex set.150

5. {(x, y) ∈ R2 : x2 + y2 ≤ 5} is convex. More generally, the ball {x ∈ Rd : ‖x‖ ≤ C} for any C ≥ 0 is151

convex.152

Exercise 2. Show that if N : Rd → R is a norm, then every ball BN (x, R) with respect to N is convex.153

Definition 2.2. Let A ∈ Rd×d be a positive definite matrix . The set {x ∈ Rd : xTAx ≤ 1} is called an154

ellipsoid. In other words, an ellipsoid is the unit ball associated with the norm induced by A – see Exercise 1.155

Exercise 2 shows that ellipsoids are convex.156
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Theorem 2.3. [Operations that preserve convexity] The following are all true.157

1. Let Xi, i ∈ I be an arbitrary family of convex sets. Then ∩i∈IXi is a convex set.158

2. Let X be a convex set and α ∈ R, then αX is a convex set.159

3. Let X,Y be convex sets, then X + Y is convex.160

4. Let T : Rd → Rm be any linear transformation. If X ⊆ Rd is convex, then T (X) is a convex set. If161

Y ⊆ Rm is convex, then T−1(Y ) is convex.162

Proof. 1. Let x,y ∈ ∩i∈IXi. This implies that x,y ∈ Xi for every i ∈ I. Since each Xi is convex, for163

every λ ∈ [0, 1], λx + (1− λ)y ∈ Xi for all i ∈ I. Therefore, λx + (1− λ)y ∈ ∩i∈IXi.164

The proofs of 2., 3. and 4. are very similar, are left for the reader.165

Remark 2.4. Observe that item 4. in Example 2.1 can be interpreted as an (uncountable) intersection166

of halfpsaces. Thus, item 2 from that example and Theorem 2.3 together give another proof that item 4.167

describes a convex set.168

Definition 2.5. Let Y = y1, . . . ,yn ∈ Rd be a finite set of points. The set of all convex combinations of Y
is defined as

{λ1y
1 + λ2y

2 + . . .+ λnyn : λi ≥ 0, λ1 + λ2 + . . .+ λn = 1}.
Proposition 2.6. If X is convex and y1, . . .yn ∈ X, then every convex combination of y1, . . . ,yn is in X.169

Proof. We prove it by induction on n. If n = 1, then the conclusion is trivial. Else consider any λ1, . . . , λn ≥ 0
such that λ1 + . . . λn = 1. Then

λ1y
1 + λ2y

2 + . . .+ λnyn

= (λ1 + . . .+ λn−1)( λ1

λ1+...+λn−1
y1 + λ2

λ1+...+λn−1
y2 + . . .+ λn−1

λ1+...+λn−1
yn−1) + λnyn

= (1− λn)ỹ + λnyn

where ỹ := λ1

λ1+...+λn−1
y1 + λ2

λ1+...+λn−1
y2 + . . .+ λn−1

λ1+...+λn−1
yn−1 belongs to X by the induction hypoth-170

esis. The rest follows from definition of convexity.171

Definition 2.7. Given any set X ⊆ Rd (not necessarily convex), the convex hull of X, denoted by conv(X),172

is a convex set C such that X ⊆ C and for any other convex set C ′, X ⊆ C ′ ⇒ C ⊆ C ′, i.e., the convex hull173

of X is the smallest (with respect to set inclusion) convex set containing X.174

Theorem 2.8. For any set X ⊆ Rd (not necessarily convex),

conv(X) =
⋂

(C : X ⊆ C,C convex) = {λ1x1 + . . .+ λtxt : x1, . . . , xt ∈ X,λ1, . . . , λt ≥ 0,

t∑
i=1

λi = 1}.

In other words, the convex hull of X is the union of the set of convex combinations of all possible finite175

subsets of X.176
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Proof. Let Ĉ =
⋂

(C : X ⊆ C,C convex), which is a convex set by Theorem 2.3 and by definition X ⊆ Ĉ.177

Consider any other convex set C ′ such that X ⊆ C ′. Then C ′ appears in the intersection, and thus Ĉ ⊆ C ′.178

Thus, Ĉ = conv(X).179

Next, let C̃ = {λ1x1 + . . .+ λtxt : x1, . . . , xt ∈ X,λ1, . . . , λt ≥ 0,
∑t
i=1 λi = 1}. Then,180

1. C̃ is convex. Consider two points z1, z2 ∈ C̃. Thus there exist two finite index sets I1, I2, two181

finite subsets of X given by X1 = {x1
i ∈ X : i ∈ I1} and X2 = {x2

i ∈ X : i ∈ I2}, and two182

subsets of nonnegative real numbers {λ1
i ≥ 0, i ∈ I1}, {λ2

i ≥ 0, i ∈ I2} such that
∑
i∈Ij λ

j
i = 1183

for j = 1, 2, with the following property : zj =
∑
i∈Ij λ

j
ix
j
i for j = 1, 2. Then for any λ ∈ [0, 1],184

λz1 + (1 − λ)z2 = λ(
∑
i∈I1 λ

1
ix

1
i ) + (1 − λ)(

∑
i∈I2 λ

2
ix

2
i ). Consider the finite set X̃ = X1 ∪ X2, and185

for each x ∈ X̃, if x = xi ∈ X1 with i ∈ I1 let µx = λ · λ1
i , and if x = xi ∈ X2 with i ∈ I2, let186

µx = (1 − λ) · λ2
i . It is easy to check that

∑
x∈X̃ µx = 1, and λz1 + (1 − λ)z2 =

∑
x∈X̃ µxx. Thus,187

λz1 + (1− λ)z2 ∈ C̃.188

2. X ⊆ C̃. We simply use λ = 1 as the multiplier for a point from X.189

3. Let C ′ be any convex set such that X ⊆ C ′. Since C ′ is convex, every point of the form λ1x1 +. . .+λtxt190

where x1, . . . , xt ∈ X, λi ≥ 0,
∑t
i=1 λi = 1 belongs to C ′ by Proposition 2.6. Thus, C̃ ⊆ C ′.191

From 1., 2. and 3., we get that C̃ = conv(X).192

2.2 Convex cones, affine sets and dimension193

We say X is convex if for all x,y ∈ X and λ, γ ≥ 0 such that λ+ γ = 1, λx + γy ∈ X. What happens if we194

relax the conditions on λ, γ?195

Definition 2.9. We have three possibilities:196

1. We say that X ⊆ Rd is a convex cone if for all x,y ∈ X and λ, γ ≥ 0, λx + γy ∈ X.197

2. We say that X ⊆ Rd is an affine set or an affine subspace, if for all x,y ∈ X and λ, γ ∈ R such that198

λ+ γ = 1, λx + γy ∈ X.199

3. We say X ⊆ Rd is a linear set or a linear subspace if for all x,y ∈ X and λ, γ ∈ R, λx + γy ∈ X.200

Remark 2.10. Since we relaxed the conditions on λ, γ, convex cones, affine sets and linear sets are all201

special cases of convex sets.202

Similar to the definition of the convex hull of an arbitrary subset X, one can define the conical hull of203

X as the set inclusion wise smallest convex cone containing X denoted by cone(X). Similarly, the affine204

(linear) hull of X as the set inclusion wise smallest affine (linear) set containing X. The affine hull will be205

be denoted by aff(X), and linear hull will be denoted by span(X). One can verify the following analog of206

Theorem 2.8.207
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Theorem 2.11. Let X ⊆ Rn. The following are all true.208

1. cone(X) =
⋂

(C : X ⊆ C,C is a convex cone) = {λ1x1 + . . .+ λtxt : x1, . . . , xt ∈ X,λ1, . . . , λt ≥ 0}.209

2. aff(X) =
⋂

(C : X ⊆ C,C is an affine set) = {λ1x1 + . . .+ λtxt : x1, . . . , xt ∈ X,
∑t
i=1 λi = 1}.210

3. span(X) =
⋂

(C : X ⊆ C,C is a linear subspace) = {λ1x1 +. . .+λtxt : x1, . . . , xt ∈ X,λ1, . . . , λt ∈ R}.211

The following is a fundamental theorem of linear algebra.212

Theorem 2.12. Let X ⊆ Rd. The following are equivalent.213

1. X is a linear subspace.214

2. There exists 0 ≤ m ≤ d and linearly independent vectors v1, . . . ,vm ∈ X such that every x ∈ X can215

be written as x = λ1v
1 + . . .+ λmvm for some reals λi, i = 1, . . . ,m, i.e., X = span({v1, . . . ,vm}).216

3. There exists a matrix A ∈ R(d−m)×d with full row rank such that X = {x ∈ Rd : Ax = 0}.217

Proof sketch. We take for granted the fact that we can have at most d linearly independent vectors in Rd.218

This is something one can show using Gaussian elimination.219

It is easy to verify that 2. ⇒ 1. (because linear combinations of linear combinations are linear combi-220

nations). To see that 1. ⇒ 2., starting with a linear subspace X, we construct a finite set v1, . . . ,vm ∈ X221

satisfying the conditions of 2. We do this in an iterative fashion. Start by picking any arbitrary v1 ∈ X. If222

X = span(v1), then we are done. Else, choose v2 ∈ X \ span(v1). Again, if X = span(v1,v2) then we are223

done, else choose v3 ∈ X \ span(v1,v2). This process has to end after at most d steps, because we cannot224

have more than d linearly independent vectors in Rd.225

It is easy to verify 3.⇒ 1. To see that 1.⇒ 3., define the set X⊥ := {y ∈ Rd : 〈y,x〉 = 0 ∀x ∈ X} (this226

is known as the orthogonal complement of X). It can be verified that X⊥ is a linear subspace. Moreover, by227

the equivalence 1.⇔ 2., we know that 2. holds for X⊥. So there exist linearly independent vectors a1, . . . ,ak228

for some 0 ≤ k ≤ d such that X⊥ = span(a1, . . . ,ak). Let A be the k × d matrix which has a1, . . . ,ak as229

rows. One can now verify that X = {x ∈ Rd : Ax = 0}. The fact that one can take k = d−m where m is230

the number from condition 2. needs additional work, which we skip here.231

Definition 2.13. The number m showing up in item 2. in the above theorem is called the dimension of X.232

The set of vectors {v1, . . . ,vm} are called a basis for the linear subspace.233

There is an analogous theorem for affine sets. For this, we need the concept of affine independence that234

is analogous to the concept of linear independence.235

Definition 2.14. We say a set X is affinely independent if there does not exist x ∈ X such that x ∈236

aff(X \ {x}).237

We now give several characterizations of affine independence.238
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Proposition 2.15. Let X ⊆ Rd. The following are equivalent.239

1. X is an affinely independent set.240

2. For every x ∈ X, the set {v − x : v ∈ X \ {x}} is linearly independent.241

3. There exists x ∈ X such that the set {v − x : v ∈ X \ {x}} is linearly independent.242

4. The set of vectors {(x, 1) ∈ Rd+1 : x ∈ X} is linearly independent.243

5. X is a finite set with vectors x1, . . . ,xm such that λ1x
1 + . . .+ λmxm = 0, λ1 + . . .+ λm = 0 implies244

λ1 = λ2 = . . . = λm = 0.245

Proof. 1. ⇒ 2. Consider an arbitrary x ∈ X. Suppose to the contrary that {v − x : v ∈ X \ {x}} is246

not linearly independent, i.e., there exist multipliers λv, not all zero, such that
∑

v∈X\{x} λv(v − x) = 0.247

Rearranging terms, we get
∑

v∈X\{x} λvv = (
∑

v∈X\{x} λv)x. We now consider two cases:248

Case 1:
∑

v∈X\{x} λv = 0. In this case, since not all the λv are zero, let v̄ ∈ X \ {x} be such that λv̄ 6= 0.249

Since
∑

v∈X\{x} λvv = (
∑

v∈X\{x} λv)x = 0, we obtain that v̄ =
∑

v∈X\{x,v̄}
λv

−λv̄
v. Since

∑
v∈X\{x} λv =250

0, this shows that v̄ ∈ aff(X \ {x,v}), contradicting the assumption that X is affinely independent.251

Case 2:
∑

v∈X\{x} λv 6= 0. We can write x =
∑

v∈X\{x}
λv∑

v∈X\{x} λv
v. This implies that x ∈ aff(X \ {x})252

contradicting the assumption that X is affinely independent.253

2.⇒ 3. Obvious.254

3. ⇒ 4. Let x̄ be such that {v − x̄ : v ∈ X \ {x̄}} is linearly independent. This means that the vectors255

{(v − x̄, 0) : v ∈ X \ {x̄}} ∪ {(x̄, 1)} are also linearly independent. Thus the matrix with these vectors as256

columns has full column rank. Now if we add the the column (x̄, 1) to the rest of the columns, this does257

not change the column rank, and thus the columns remain linearly independent. But the new matrix has258

precisely {(x, 1) ∈ Rd+1 : x ∈ X} as its columns.259

4. ⇒ 5. Follows from the fact that if {(x, 1) ∈ Rd+1 : x ∈ X} is linearly independent, then the set X260

must be finite. Moreover, if
∑

x∈X λx(x, 1) = 0 for some real numbers {λx}x∈X , then λx = 0 for all x ∈ X.261

5. ⇒ 1. Consider any xi ∈ X. If xi ∈ aff(X \ {xi}), then there exist multipliers λj ∈ R, j 6= i such262

that xi =
∑
j 6=i λjx

j and
∑
j 6=i λj = 1. This implies that

∑m
j=1 λjx

j = 0 where λi = −1, and therefore263

λ1 + . . .+ λm = 0, contradicting the hypothesis of 5.264

We are now ready to state the affine version of Theorem 2.12.265

Theorem 2.16. Let X ⊆ Rd. The following are equivalent.266

1. X is an affine subspace.267
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2. There exists a linear subspace L of dimension 0 ≤ m ≤ d, such that X − x = L for every x ∈ X.268

3. There exist affinely independent vectors v1, . . . ,vm+1 ∈ X for 0 ≤ m ≤ d such that every x ∈ X can be269

written as x = λ1v
1 + . . .+λm+1v

m+1 for some reals λi, i = 1, . . . ,m+1 such that λ1 + . . .+λm+1 = 1,270

i.e., X = aff({v1, . . . ,vm+1}).271

4. There exists a matrix A ∈ R(d−m)×d with full row rank and a vector b ∈ Rd−m for some 0 ≤ m ≤ d272

such that X = {x ∈ Rd : Ax = b}.273

Proof. 1.⇒ 2. Fix an arbitrary x? ∈ X. Define L = X − x?. We first show that L is a linear subspace: for274

any y1,y2 ∈ X, λ(y1 − x?) + γ(y2 − x?) ∈ X − x? for any λ, γ ∈ R. Since λ(y1 − x?) + γ(y2 − x?) + x? =275

λy1 + γy2 + (1 − λ − γ)x? and X is an affine subset, therefore, λ(y1 − x?) + γ(y2 − x?) + x? ∈ X. So,276

λ(y1 − x?) + γ(y2 − x?) ∈ L. Now, for any other x̄ ∈ X, we need to show that L = X − x̄. Consider any277

y ∈ L, i.e., y = x − x? for some x ∈ X. Observe that y = (x + x̄ − x?) − x̄ and x + x̄ − x? ∈ X (because278

the coefficients all sum to 1). Therefore, y ∈ X − x̄ showing that L = X − x? ⊆ X − x̄. Switching the roles279

of x? and x̄, one can similarly show that X − x̄ ⊆ X − x? = L.280

2. ⇒ 1. Consider any y1,y2 ∈ X and let λ, γ ∈ R such that λ + γ = 1. We need to show that281

λy1+γy2 ∈ X. SinceX−y1 is a linear subspace, γ(y2−y1) ∈ X−y1. Thus, γ(y2−y1)+y1 = λy1+γy2 ∈ X.282

The equivalence of 2., 3. and 4. follows from Theorem 2.12.283

Definition 2.17 (Dimension of convex sets). If X is an affine subspace and x ∈ X, the linear subspace284

X − x is called the linear subspace parallel to X and the dimension of X is the dimension of the linear285

subspace X − x. For any convex set X, the dimension of X is the dimension of aff(X) and will be denoted286

by dim(X).287

Lemma 2.18. If X is a set of affinely independent points, then dim(aff(X)) = |X| − 1.288

Proof. Fix any x ∈ X. By Theorem 2.16, L = aff(X)− x is a linear subspace. We claim that (X \ {x})− x289

is a basis for L. The verification of this claim is left to the reader.290

Proposition 2.19. Let X be a convex set. dim(X) equals one less than the maximum number of affinely291

independent points in X.292

Proof. Let X0 ⊆ X be a maximum sized set of affinely independent points in X. By Problem 5 in HW I,293

aff(X0) ⊆ aff(X). Since X0 is a maximum sized set of affinely independent points in X, any x ∈ X must294

lie in aff(X0). Therefore, X ⊆ aff(X0). Since aff(X0) is an affine set, by definition of affine hull of X,295

we have aff(X) ⊆ aff(X0). Therefore, aff(X) = aff(X0), implying that dim(aff(X0)) = dim(aff(X)). By296

Lemma 2.18, we thus obtain |X0| − 1 = dim(aff(X)).297

2.3 Representations of convex sets298

A large part of modern convex geometry is concerned with algorithms for computing with or optimizing over299

convex sets. For algorithmic purposes, we need ways to describe a convex set, so that it can be stored in a300

computer compactly and computations can be performed with it.301
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2.3.1 Extrinsic description: separating hyperplanes302

Perhaps the most primitive convex set in Rd is the halfspace – see item 2. in Example 2.1. Moreover, a303

halfspace is a closed convex set. By Theorem 2.3, the intersection of an arbitrary family of halfspaces is a304

closed convex set. Perhaps the most fundamental theorem of convexity is that the converse is true.305

Theorem 2.20 (Separating Hyperplane Theorem). Let C ⊆ Rd be a closed convex set and let x 6∈ C. There306

exists a halfspace that contains C and does not contain x. More precisely, there exists a ∈ Rd \ {0}, δ ∈ R307

such that 〈a,y〉 ≤ δ for all y ∈ C and 〈a,x〉 > δ. The hyperplane {y ∈ Rd : 〈a,y〉 = δ} is called a separating308

hyperplane for C and x.309

Proof. If C is empty, then any halfspace that does not contain x suffices. Otherwise, consider any x̄ ∈ C310

and let r = ‖x − x̄‖. Let C̄ = C ∩ B(x, r). Since C is closed and B(x, r) is compact, C̄ is compact. One311

can also verify that the function f(y) = ‖y− x‖ is a continuous function on Rd. Therefore, by Weierstrass’312

Theorem (Theorem 1.11), there exists x? ∈ C̄ such that ‖x− x?‖ ≤ ‖x− y‖ for all y ∈ C̄, and therefore in313

fact ‖x− x?‖ ≤ ‖x− y‖ for all y ∈ C.314

Let a = x − x? and let δ = 〈a,x?〉. Note that a 6= 0 because x 6∈ C and x? ∈ C. Also note that
〈a,x〉 = 〈a,a + x?〉 = ‖a‖2 + δ > δ. Thus, it remains to check that 〈a,y〉 ≤ δ for all y ∈ C. For any y ∈ C,
all the points αy + (1− α)x?, α ∈ (0, 1) are in C by convexity. Therefore, by the extremal property of x?,
we have

‖x− x?‖2 ≤ ‖x− (αy + (1− α)x?)‖2 ∀α ∈ (0, 1)
⇒ 0 ≤ α2‖y − x?‖2 − 2α〈x− x?,y − x?〉 ∀α ∈ (0, 1)
⇒ 2〈x− x?,y − x?〉 ≤ α‖y − x?‖2 ∀α ∈ (0, 1)

Letting α→ 0 in the last inequality yields that 0 ≥ 〈x−x?,y−x?〉 = 〈a,y−x?〉. Thus, 〈a,y〉 ≤ 〈a,x?〉 = δ315

for all y ∈ C.316

Corollary 2.21. Every closed convex set can be written as the intersection of some family of halfpsaces.317

In other words, a subset X ⊆ Rd is a closed convex set if and only if there exists a family of tuples (ai, δi),318

i ∈ I (where I may be an uncountable index set) such that X = ∩i∈IH−(ai, δi).319

Definition 2.22. A finite intersection of halfpsaces is called a polyhedron. In other words, P ⊆ Rd is320

a polyhedron if and only if there exist vectors a1, . . . ,am ∈ Rd and real numbers b1, . . . , bm such that321

P = {x ∈ Rd : 〈ai,x〉 ≤ bi i = 1, . . . ,m}. The shorthand P = {x ∈ Rd : Ax ≤ b} is often employed, where322

A is the m× d matrix with a1, . . . ,am as rows, and b = (b1, . . . , bm) ∈ Rm.323

Thus, a polyhedron is completely described by specifying a matrix A ∈ Rm×d and a vector b ∈ Rm.324

Question 1. How would one show that the unit ball for the standard Euclidean norm in Rd is not a325

polyhedron?326

Another related, and very useful, result is the following.327
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Theorem 2.23 (Supporting Hyperplane Theorem). Let C ⊆ Rd be a convex set and let x ∈ bd(C). Then,328

there exists a ∈ Rd \ {0}, δ ∈ R such that 〈a,y〉 ≤ δ for all y ∈ C and 〈a,x〉 = δ. The hyperplane329

{y ∈ Rd : 〈a,y〉 = δ} is called a supporting hyperplane for C at x.330

Proof. Since bd(C) = bd(Rd \ cl(C)), x ∈ bd(Rd \ cl(C)). Since Rd \ cl(C) is an open set, there exists a331

sequence {xi}i∈N such that xi → x and each xi 6∈ cl(C). By Theorem 2.20, for each xi, there exists ai such332

that 〈ai,y〉 < 〈ai,xi〉 for all y ∈ C. By scaling the vectors ai, we can assume that ‖ai‖ = 1 for all i ∈ N.333

Since the set of unit norm vectors is a compact set, by Theorem 1.10, one can pick a convergent sub-334

sequence aik → a such that 〈aik ,y〉 < 〈aik ,xik〉 for all y ∈ C. Taking the limit on both sides, we obtain335

〈a,y〉 ≤ 〈a,x〉 for all y ∈ C. We simply set δ = 〈a,x〉. Note also that since ‖ai‖ = 1 for all i ∈ N, we must336

have ‖a‖ = 1, and so a 6= 0.337

How to represent general convex sets: Separation oracles. We have seen that polyhedra can be338

represented by a matrix A and a right hand side b. Norm balls can be represented by the center x and the339

radius R. Ellipsoids can be represented by PD matrices A. What about general convex sets? This problem340

is gotten around by assuming that one has “black-box” access to the convex set via a separation oracle.341

More formally, we say that a convex set C ⊆ Rd is equipped with a separation oracle O that takes as input342

any vector x ∈ Rd and gives the following output: If x ∈ C, the output is “YES”, and if x 6∈ C, then the343

output is a tuple (a, δ) ∈ Rd × R such that {y ∈ Rd : 〈a,y〉 = δ} is a separating hyperplane for x and C.344

Farkas’ lemma: A glimpse into polyhedral theory. A nice characterization of solutions to systems345

of linear equations is given in linear algebra, which can be viewed as the most basic type of “theorem of the346

alternative”.347

Theorem 2.24. Let A ∈ Rd×n and b ∈ Rd. Exactly one of the following is true.348

1. Ax = b has a solution.349

2. There exists u ∈ Rd such that uTA = 0 and uTb 6= 0.350

What if we are interested in nonnegative solutions to linear equations? Farkas’ lemma is a characterization351

of such solutions.352

Theorem 2.25. [Farkas’ Lemma] Let A ∈ Rd×n and b ∈ Rd. Exactly one of the following is true.353

1. Ax = b, x ≥ 0 has a solution.354

2. There exists u ∈ Rd such that uTA ≤ 0 and uTb > 0.355

Before we dive into the proof of Farkas’ Lemma, we need a technical result.356

Lemma 2.26. Let a1, . . . ,an ∈ Rd. Then cone({a1, . . . ,an}) is closed.357
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Proof. We will complete the proof of this lemma when we do Caratheodory’s theorem (See the end of358

Section 2.4).359

Proof of Theorem 2.25. Let a1, . . . ,an ∈ Rd be the columns of the matrix A. By Lemma 2.26, the cone360

C = {Ax : x ≥ 0} is closed. Then we have two cases, either b ∈ C or b 6∈ C. In the first case, we end up in361

Case 1 of the statement of the theorem. In the second case, by Theorem 2.20, there exists u ∈ Rd and δ ∈ R362

such that 〈u,y〉 ≤ δ for all y ∈ C and 〈u,b〉 > δ. Since 0 ∈ C, we must have δ ≥ 〈u,0〉 = 0. This already363

shows that 〈u,b〉 > 0.364

Now suppose to the contrary that for some ai, 〈u,ai〉 > 0. Thus, there exists λ̄ ≥ 0 such that λ̄〈u,ai〉 > δ365

(for example, take λ̄ = |δ|+1
〈u,ai〉 ). Since y := λ̄ai ∈ C, this implies that 〈u,y〉 > δ, contradicting that 〈u,y〉 ≤ δ366

for all y ∈ C.367

Duality/Polarity. With every linear space, one can associate a “dual” linear space which is its orthogonal368

complement.369

Definition 2.27. Let X ⊆ Rd be a linear subspace. We define X⊥ := {y ∈ Rd : 〈y,x〉 = 0 ∀x ∈ X} as the370

orthogonal complement of X.371

The following is well-known from linear algebra.372

Proposition 2.28. X⊥ is a linear subspace. Moreover, (X⊥)⊥ = X.373

There is a way to generalize this idea of associating a dual object to convex sets.374

Definition 2.29. Let X ⊆ Rd be any set. The set defined as

X◦ := {y ∈ Rd : 〈y,x〉 ≤ 1 ∀x ∈ X}

is called the polar of X.375

Proposition 2.30. The following are all true.376

1. X◦ is a closed, convex set for any X ⊆ Rd (not necessarily convex).377

2. (X◦)◦ = cl(conv(X ∪ {0})). In particular, if X is a closed convex set containing the origin, then378

(X◦)◦ = X.379

3. If X is a convex cone, then X◦ = {y ∈ Rd : 〈y,x〉 ≤ 0 ∀x ∈ X}.380

4. If X is a linear subspace, then X◦ = X⊥.381

Proof. 1. Follows from the fact that X◦ can be written as the intersection of closed halfspaces:

X◦ =
⋂
x∈X
{y ∈ Rd : 〈y,x〉 ≤ 1}.
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2. Observe that X ⊆ (X◦)◦. Also, 0 ∈ (X◦)◦, because 0 is always in the polar of any set. Since (X◦)◦ is382

a closed convex set by 1., we must have cl(conv(X ∪ {0})) ⊆ (X◦)◦.383

To show the reverse inclusion, we show that if y 6∈ cl(conv(X ∪ {0})) then y 6∈ (X◦)◦. Thus, we need384

to show that there exists z ∈ (X◦) such that 〈y, z〉 > 1. Since y 6∈ cl(conv(X∪{0})), by Theorem 2.20,385

there exists a ∈ Rd, δ ∈ R such that 〈a,y〉 > δ and 〈a,x〉 ≤ δ for all x ∈ cl(conv(X ∪ {0})). Since386

0 ∈ cl(conv(X ∪ {0})), we obtain that 0 ≤ δ. We now consider two cases:387

Case 1: δ > 0. Set z = a
δ . Now, 〈z,x〉 ≤ 1 for all x ∈ X because 〈a,x〉 ≤ δ for all x ∈ cl(conv(X ∪388

{0})) ⊇ X. Therefore, z ∈ X◦. Moreover, 〈z,y〉 > 1 because 〈a,y〉 > δ. So we are done.389

Case 2: δ = 0. Define ε := 〈a,y〉 > δ = 0. Set z = 2a
ε . Then, 〈z,y〉 = 2 > 1. Also, for every390

x ∈ X ⊆ cl(conv(X ∪ {0})), we obtain that 〈z,x〉 = 2
ε 〈a,x〉 ≤ 2

ε δ = 0 ≤ 1. Thus, z ∈ X◦. Thus, we391

are done.392

3. and 4. are left to the reader.393

394

Example 2.31. If p, q ≥ 1 such that 1
p + 1

q = 1 (allowing for p or q to be ∞), then B◦`p(0, 1) = B`q (0, 1).
This example illustrates the use of the fundamental Holder’s inequality.

Proposition 2.32 (Holder’s inequality). If p, q ≥ 1 such that 1
p + 1

q = 1 (allowing for p or q to be ∞),
then

|〈x,y〉| ≤ ‖x‖p‖y‖q,

for every x,y ∈ Rd. Moreover, if p, q > 1 then equality holds if and only if |xi| = |yi|
q
p .

The special case with p = q = 2 is known as the Cauchy-Schwarz inequality. We won’t prove Holder’s
inequality here, but we will use it to derive the polarity relation between `p unit balls. We only show
that B`q (0, 1) = B◦`p(0, 1) for any p, q > 1 such that 1

p + 1
q = 1. The case p = 1, q = ∞ is considered in

Problem 6 from “HW for Week III”.
First, we show that B`q (0, 1) ⊆ B◦`p(0, 1) Consider any y ∈ B`q (0, 1) and consider any x ∈ B`p . By
Cauchy-Schwarz, we obtain that 〈x,y〉 ≤ ‖x‖p‖y‖q ≤ 1. Thus, B`q (0, 1) ⊆ B◦`p(0, 1). To show the reverse
inclusion B◦`p(0, 1) ⊆ B`q (0, 1), consider any y ∈ B◦`p(0, 1). We would like to show that y ∈ B`q (0, 1), i.e.,
‖y‖q ≤ 1. Suppose to the contrary that ‖y‖q > 1. Consider x defined as follows: for each i = 1, . . . , d, xi
has the same sign as yi, and |xi| = |yi|

q
p . Set x̃ = x

‖x‖p . Now,

〈y, x̃〉 =
1

‖x‖p
〈x,y〉 =

1

‖x‖p
(‖x‖p‖y‖q) = ‖y‖q > 1,

contradicting the fact that y ∈ B◦`p(0, 1), because ‖x̃‖p = 1. The second equality follows from Proposi-
tion 2.32 because of the special choice of x.

395
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2.3.2 Intrinsic description: faces, extreme points, recession cone, lineality space396

We have seen that given any set X of points in Rd, the convex hull of X – the smallest convex set containing397

X – can be expressed as the set of all convex combinations of finite subsets of X (Theorem 2.8). One398

possibility to represent a convex set C intrinsically is to give a minimal subset X ⊆ C such that all points in399

C can be expressed as convex combinations of points in X, i.e., C = conv(X). In particular, if X is a finite400

set, then we can use X to represent C in a computer: implicitly, C is the convex hull of the set X. We are401

going to get to such a “minimal” intrinsic description.402

Definition 2.33 (Faces and extreme points). Let C be a convex set. A convex subset F ⊆ C is called an403

extreme subset or a face of C, if for any x ∈ F the following holds: x1,x2 ∈ C, x
1+x2

2 = x implies that404

x1,x2 ∈ F . This is equivalent to saying that there is no point in F that can be expressed as a convex405

combination of points in C \ F – see Problem 10 from “HW for Week III”.406

A face of dimension 0 is called an extreme point. In other words, x is an extreme point of C if the407

following holds: x1,x2 ∈ C, x1+x2

2 = x implies that x1 = x2 = x. We denote the set of extreme points of C408

by ext(C).409

The one-dimensional faces of a convex set are called its edges. If k = dim(C), then the (k−1)-dimensional410

faces are called facets. We will see below that the only k-dimensional face of C is C itself. Any face of C411

that is not C or ∅ is called a proper face of C.412

Definition 2.34. Let C be a convex set. We define the relative interior of C as the set of all x ∈ C for413

which there exists ε > 0 such that for all y ∈ aff(C), x + ε
(

y−x
‖y−x‖

)
∈ C. We denote it by relint(C).1414

We define the relative boundary of C to be relbd(C) := cl(C) \ relint(C).415

Exercise 3. Let C be convex and x ∈ C. Suppose that for all y ∈ aff(C), there exists εy such that416

x + εy(y − x) ∈ C. Show that x ∈ relint(C).417

This exercise shows that it suffices to have a different ε for every direction; this implies a universal ε for418

every direction.419

Exercise 4. Show that relint(C) is nonempty for any nonempty convex set C.420

Lemma 2.35. Let C be a convex set of dimension k. The only k dimensional face of C is C itself.421

Proof. Let F ( C be a proper face of C. Let x ∈ C\F . Let X ⊆ F be a maximum set of affinely independent422

points in F . We claim that X∪{x} is affinely independent. This immediately implies that dim(C) > dim(F )423

and we will be done.424

Suppose to the contrary that x ∈ aff(X). Then consider x? ∈ relint(F ) (which is nonempty by Exercise 4).425

By definition, there exists ε > 0 such that y = x? + ε(x− x?) ∈ F . But this means that y = (1− ε)x? + εx.426

Since y ∈ F , and x 6∈ F , this contradicts that F is a face.427

1For the reader familiar with the concept of a relative topology: the relative interior of C is the interior of C with respect
to the relative topology of aff(C).
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Lemma 2.36. Let C be a convex set and let F ⊆ C be a face of C. If x is an extreme point of F , then x428

is an extreme point of C.429

Proof. Left to the reader.430

Lemma 2.37. Let C ⊆ Rd be convex. Let a ∈ Rd and δ ∈ R be such that C ⊆ {x ∈ Rd : 〈a,x〉 ≤ δ}. Then,431

the set F = C ∩ {x ∈ Rd : 〈a,x〉 = δ} is a face of C.432

Proof. Let x̄ ∈ F and x1,x2 ∈ C such that x1+x2

2 = x̄. By the hypothesis, 〈a,xi〉 ≤ δ for i = 1, 2. If for
either i = 1, 2, 〈a,xi〉 < δ, then

〈a, x̄〉 =

〈
a,

x1 + x2

2

〉
=
〈a, x̄1〉+ 〈a, x̄2〉

2
< δ

contradicting that x ∈ F . Therefore, we must have 〈a,xi〉 = δ for i = 1, 2 and thus, x1,x2 ∈ F .433

Definition 2.38. A face F of a convex set C is called an exposed face if there exists a ∈ Rd and δ ∈ R be434

such that C ⊆ {x ∈ Rd : 〈a,x〉 ≤ δ} and F = C ∩ {x ∈ Rd : 〈a,x〉 = δ}. We will sometimes make it explicit435

and say that F is an exposed face induced by (a, δ).436

By working with the affine hull and the relative interior, and using Problem 3 from “HW for Week II”,437

a stronger version of the supporting hyperplane theorem can be shown to be true.438

Theorem 2.39 (Supporting Hyperplane Theorem - II). Let C ⊆ Rd be convex and x ∈ relbd(C). There439

exists a ∈ Rd and δ ∈ R such that all of the following hold:440

(i) 〈a,y〉 ≤ δ for all y ∈ C,441

(ii) 〈a,x〉 = δ, and442

(iii) there exists ȳ ∈ C such that 〈a, ȳ〉 < δ. This third condition says that C is not completely contained443

in the hyperplane {y ∈ Rd : 〈a,y〉 = δ}.444

An important consequence of the above discussion is the following theorem about the relative boundary445

of a closed, convex set C.446

Theorem 2.40. Let C ⊆ Rd be a closed, convex set and x ∈ C. x is contained in a proper face of C if and447

only if x ∈ relbd(C).448

Proof. If x ∈ relbd(C), then by Theorem 2.39 there exists a ∈ Rd and δ ∈ R such that the three conditions449

in Theorem 2.39 hold. By Lemma 2.37, F = C ∩ {x ∈ Rd : 〈a,x〉 = δ} is a face of C, and it is proper face450

because of condition (iii) in Theorem 2.39.451

Now let x ∈ F where F is a proper face of C. Sicne C is closed, it suffices to show that x 6∈ relint(C).
Suppose to the contrary that x ∈ relint(C). Let x̄ ∈ C \F . Observe that 2x− x̄ ∈ aff(C). Since x is assumed
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to be in the relative interior of C, there exists ε > 0 such that y = ε((2x − x̄) − x) + x ∈ C. Rearranging
terms, we obtain that

x =
ε

ε+ 1
x̄ +

1

ε+ 1
y.

Since x ∈ F and x̄ 6∈ F , this contradicts the fact that F is a face. Thus, x 6∈ relint(C) and so x ∈452

relbd(C).453

In our search for a subset X ⊆ C such that C = conv(X), it is clear that X must contain all extreme454

points. But is it sufficient to include all extreme points? In other words, is it true that C = conv(ext(C))?455

No! A simple counterexample is Rd+. Its only extreme point is 0. Another weird example is the set456

{x ∈ Rd : ‖x‖ < 1} – this set has NO extreme points! As you might suspect, the problem is that these sets457

are not compact, i.e., closed and bounded.458

Theorem 2.41 (Krein-Milman Theorem). If C is a compact convex set, then C = conv(ext(C)).459

Proof. The proof is going to use induction on the dimension of C. First, if C is the empty set, then the460

statement is a triviality. So we assume C is nonempty.461

For the base case with dim(C) = 0, i.e., C = {x} is a single point, the statement follows because {x} is462

an extreme point of C, and C = conv({x}). For the induction step, consider any point x ∈ C. We consider463

two cases:464

Case 1: x ∈ relbd(C). By Theorem 2.40, x is contained in a proper face F of C. By Lemma 2.35, dim(F ) <465

dim(C). By the induction hypothesis applied to F (note that F is also compact using Problem 14 from “HW466

for Week III”), we can express x as a convex combination of extreme points of F , which by Lemma 2.36,467

shows that x is a convex combination of extreme points of C.468

Case 2: x ∈ relint(C). Let ` ⊆ aff(C) be any affine set of dimension one (i.e., a line) going through x. Since469

C is compact, ` ∩ C is a line segment. The end points x1,x2 of ` ∩ C must be in the relative boundary470

of C. By the previous case, x1,x2 can be expressed as the convex combination of extreme points in C.471

Since x is a convex combination of x1 and x2, and a convex combination of convex combinations is a convex472

combination, we can express x as the convex combination of extreme points of C.473

What about non-compact sets? Let us relax the condition of being bounded. So we want to describe474

closed, convex sets. It turns out that there is a nice way to deal with unboundedness. We introduce the475

necessary concepts next.476

Proposition 2.42. Let C be a closed, convex set, and r ∈ Rd. The following are equivalent:477

1. There exists x ∈ C such that x + λr ∈ C for all λ ≥ 0.478

2. For every x ∈ C, x + λr ∈ C for all λ ≥ 0.479
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Proof. We only need to show 1. ⇒ 2.; the reverse implication is trivial. Let x̄ be such that x̄ + λr ∈ C
for all λ ≥ 0. Consider any arbitrary x? ∈ C. Suppose to the contrary that there exists λ′ ≥ 0 such that
y = x? + λ′r 6∈ C. By Theorem 2.20, there exist a ∈ Rd, δ ∈ R such that 〈a,y〉 > δ and 〈a,x〉 ≤ δ for all
x ∈ C. This means that 〈a, r〉 > 0 because otherwise, 〈a,y〉 = 〈a,x?〉+ λ′〈a, r〉 = δ + λ′〈a, r〉 ≤ δ causing a

contradiction. But then, if we choose λ̄ = |δ−〈a,x̄〉|+1
〈a,r〉 , we would obtain that

〈a, x̄ + λr〉 = 〈a, x̄〉+ λ̄〈a, r〉 = 〈a, x̄〉+ |δ − 〈a, x̄〉|+ 1 ≥ δ + 1 > δ,

contradicting the assumption that x̄ + λ̄r ∈ C.480

Definition 2.43. Any r ∈ Rd that satisfies the conditions in Proposition 2.42 is called a recession direction481

for C.482

Proposition 2.44. The set of all recession directions of a closed, convex set is a closed, convex cone.483

Proof. Fix any point x in the closed convex set C. Using condition 1. of Proposition 2.42, we see r ∈ Rd is
a recession direction if and only if for every λ ≥ 0, r ∈ 1

λ (C − x). Therefore,

rec(C) =
⋂
λ≥0

1

λ
(C − x).

Each term in the intersection is a closed, convex set. Therefore, rec(C) is a closed, convex set. It is easy to484

see that for any r ∈ rec(C), λr ∈ rec(C) also for every λ ≥ 0. Thus, rec(C) is a closed, convex cone.485

Definition 2.45. We call the cone of recession directions the recession cone of C and is denoted by rec(C).486

The set rec(C) ∩ − rec(C) is a linear subspace and is called the lineality space of C. It will be denoted by487

lin(C).488

Exercise 5. Show that Proposition 2.42 remains true if λ ≥ 0 is replaced by λ ∈ R in both conditions.489

Show that lin(C) is exactly the set of all r ∈ Rd that satisfy these modified conditions.490

Proposition 2.42 immediately gives the following corollary.491

Corollary 2.46. Let C be a closed convex set and let F ⊆ C be a closed, convex subset. Then rec(F ) ⊆492

rec(C).493

Proof. Left as an exercise.494

Here is a characterization of compact convex sets.495

Theorem 2.47. A closed convex set C is compact if and only if rec(C) = {0}.496
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Proof. We leave it to the reader to check that if C is compact, then rec(C) = {0}. For the other direction,
assume that rec(C) = {0}. Suppose to the contrary that C is not bounded, i.e., there exists a sequence
of points yi ∈ C such that ‖yi‖ → ∞. Let x ∈ C be any point and consider the set of unit norm vectors

ri = yi−x
‖yi−x‖ . Since this is a sequence of unit norm vectors, by Theorem 1.10, there is a convergent subsequence

{rik}∞k=1 converging to r also with unit norm. We claim that r is a recession direction, giving a contradiction
to rec(C) = {0}. To see this, for any λ ≥ 0, let N ∈ N such that ‖yik − x‖ > λ for all k ≥ N . We now
observe that

x + λrik =
(‖yik − x‖ − λ)

‖yik − x‖ x +
λ

‖yik − x‖ (x + ri‖yik − x‖) =
(‖yik − x‖ − λ)

‖yik − x‖ x +
λ

‖yik − x‖y
ik ∈ C

for all k ≥ N . Letting k →∞, since C is closed, we obtain that x + λr = limk→∞ x + λrik ∈ C.497

We next consider closed convex sets whose lineality space is {0}.498

Definition 2.48. If lin(C) = {0} then C is called pointed.499

The main result about pointed closed convex sets says that you can decompose them into convex combi-500

nations of extreme points and recession directions.501

Theorem 2.49. If C is a closed, convex set that is pointed, then C = conv(ext(C)) + rec(C).502

Proof. The proof follows the same lines as Theorem 2.41. We prove by induction on dimension of C. If503

dim(C) = 0, then C is a single point, and we are done.504

We may assume C is nonempty. Consider any x ∈ C and then two cases:505

Case 1: x ∈ relbd(C). By Theorem 2.40, x is contained in a proper face F of C. By Lemma 2.35, dim(F ) <506

dim(C). By the induction hypothesis applied to F (note that F is also closed using Problem 14 from “HW507

for Week III”), we can express x = x′ + d, where x′ is a convex combination of extreme points of F and d508

is a recession direction for F . By Lemma 2.36, shows that x′ is a convex combination of extreme points of509

C. By Corollary 2.46, d ∈ rec(C).510

Case 2: x ∈ relint(C). Let ` be any affine set of dimension one (i.e., a line) going through x. Since C contains511

no lines (C is pointed), `∩C is either a line segment, i.e., x is the convex combination of x1,x2 ∈ relbd(C),512

or ` ∩ C is a half-line, i.e, x = x′ + d, where x′ ∈ relbd(C) and d ∈ rec(C).513

In the first case, using Case 1, for each i = 1, 2, xi can be expressed as xi = yi + di, where yi is a convex514

combination of extreme points in C, and di ∈ rec(C). Since x is a convex combination of x1 and x2, this515

shows that x ∈ conv(ext(C)) + rec(C).516

In the second case, applying Case 1 to x′, we express x′ = y′ + d′ where y′ is a convex combination of517

extreme points in C, and d′ ∈ rec(C). Thus, x = y′ + d′ + d and we have the desired representation.518

Lets make this description even more “minimal”. For this we will need to understand the structure of519

pointed cones.520

NOTES: 21



Proposition 2.50. Let D be a closed, convex cone. The following are equivalent.521

1. D is pointed.522

2. D◦ is full-dimensional, i.e., dim(D◦) = d.523

3. 0 is an exposed face of D.524

4. There exists a compact, convex subset B ⊂ D \ {0} such that for every d ∈ D \ {0}, there exists a525

unique b ∈ B such that d = λb for some λ > 0. In particular, D = cone(B).526

Proof. 1.⇒ 2. If D◦ is not full-dimensional, then aff(D◦) is a linear space of dimension strictly less than d,527

and so aff(D◦)⊥ 6= {0}. Since D◦ ⊆ aff(D◦), using Problem 3 from “HW for Week III”, and property 2.528

and 4. in Proposition 2.30, we obtain that aff(D◦)⊥ = aff(D◦)◦ ⊆ (D◦)◦ = D. Since aff(D◦)⊥ is a linear529

space, this implies that aff(D◦)⊥ ⊆ lin(D), contradicting the assumption that D is pointed.530

2.⇒ 3. By Problem 5 from “HW for Week II”, int(D◦) 6= ∅. Choose any y ∈ int(D◦). Since D◦ = {y ∈531

Rd : 〈x,y〉 ≤ 0 ∀x ∈ D}, using Problem 3 from “HW for Week II”, we obtain that 〈y,x〉 < 0 for every532

x ∈ D. This shows that the exposed face induced by (y, 0) is exactly {0}.533

3.⇒ 4. Let 0 be an exposed face induced by (y, 0). Define B := D ∩ {x ∈ Rd : 〈y,x〉 = −1}. It is clear534

from the definition that 0 6∈ B. We now show that B is compact. It is the intersection of closed sets, so535

it is closed. By Theorem 2.47, it suffices to show that rec(B) = {0}. Suppose to the contrary that there536

exists r ∈ rec(B) \ {0}. Consider any point x̄ ∈ B. Since 〈y, x̄〉 = −1 and 〈y, x̄ + r〉 = −1, we obtain that537

〈y, r〉 = 0. Now, by Proposition 2.42, we obtain that 0+r ∈ D, i.e., r ∈ D. But then 〈y, r〉 = 0 contradicting538

that 0 is an exposed face of D induced by (y, 0).539

We next consider any d ∈ D. By our assumption, 〈y,d〉 < 0. Thus, setting b = d
|〈y,d〉| , we obtain that

〈y,b〉 = −1 and thus, b ∈ B. To show uniqueness, consider b1,b2 ∈ B both satisfying the condition. This
means, b2 = λb1 for some λ > 0. Therefore,

λ〈y,b1〉 = 〈y,b2〉 = −1 = 〈y,b1〉

showing that λ = 1. This shows uniqueness of b.540

4.⇒ 1. If D is not pointed, then there exists x ∈ D\{0} such that −x ∈ D. Moreover, there exists λ1 > 0541

such that x1 = λ1x ∈ B and λ2 > 0 such x2 = λ2(−x) ∈ B. Since B is convex, λ2

λ1+λ2
x1 + λ1

λ1+λ2
x2 = 0 is542

in B, contradicting the assumption.543

Definition 2.51. For any closed convex coneD, any subset B ⊆ D satisfying condition 4. of Proposition 2.50544

is called a base of D.545

The proof of Proposition 2.50 also shows the following.546

Corollary 2.52. Let D be a closed, convex cone. D is pointed if and only if there exists a hyperplane H547

such that H ∩D is a base of D.548
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Remark 2.53. In fact, it can be shown that any base of a pointed cone D must be of the form H ∩D for549

some hyperplane H. We skip the proof of this fact from these notes.550

Definition 2.54. Let D be a closed, convex cone. An edge of D is called an extreme ray of D. We say that551

r ∈ D spans an extreme ray if {λr : λ ≥ 0} is an extreme ray. The set of extreme rays of D will be denoted552

by extr(D).553

Proposition 2.55. Let D be a closed, convex cone and r ∈ D \ {0}. r spans an extreme ray of D if and554

only if for all r1, r2 ∈ D such that r = r1+r2

2 , there exist λ1, λ2 ≥ 0 such that r1 = λ1r and r2 = λ2r.555

Proof. Left as an exercise.556

Here is an analogue of the Krein-Milman Theorem (Theorem 2.41) for closed convex cones.557

Theorem 2.56. If D is a pointed, closed, convex cone, then D = cone(extr(D)).558

Proof. By Proposition 2.50, there exists a base B for D. Since B is compact, B = conv(ext(B)) by Theo-559

rem 2.41. It is easy to verify that the ray spanned by each r ∈ ext(B) is an extreme ray for D, and vice versa,560

any extreme ray of D is spanned by some r ∈ ext(B). Moreover, using the fact that B = conv(ext(B)), it561

immediately follows that D = cone(extr(D)).562

Slight abuse of notation. For a closed convex set C, we will also use extr(C) to denote extr(rec(C)). We563

will also say these are the extreme rays of C.564

Now we can write a sharper version of Theorem 2.49:565

Corollary 2.57. If C is a closed, convex set that is pointed, then C = conv(ext(C)) + cone(extr(C)).566

Thus, to describe a pointed closed convex set, we just need to specify its extreme points and its extreme567

rays. We finally deal with general closed convex sets that are not necessarily pointed. The idea is that the568

lineality space can be “factored out”.569

Lemma 2.58. If C is a closed convex set, then C ∩ lin(C)⊥ is pointed.570

Proof. Define Ĉ = C∩lin(C)⊥. Ĉ is closed because it is the intersection of two closed sets. By Corollary 2.46,571

rec(Ĉ) ⊆ rec(C). Therefore, lin(Ĉ) = rec(Ĉ)∩− rec(Ĉ) ⊆ rec(C)∩− rec(C) = lin(C). By the same reasoning,572

lin(Ĉ) ⊆ lin(lin(C)⊥) = lin(C)⊥. Since lin(C) ∩ lin(C)⊥ = {0}, we obtain that lin(Ĉ) = {0}.573

Theorem 2.59. Let C be a closed convex set and let Ĉ = C ∩ lin(C)⊥. Then

C = conv(ext(Ĉ)) + cone(extr(Ĉ)) + lin(C).

Proof. We first observe that C = Ĉ + lin(C). Indeed, for any x ∈ C, we can express x = x′ + r where574

x′ ∈ lin(C)⊥ and r ∈ lin(C) (since lin(C) + lin(C)⊥ = Rn). We also know that x′ = x − r ∈ C because575

r ∈ lin(C). Thus, x′ ∈ Ĉ and we are done. Ĉ is pointed by Lemma 2.58 and applying Corollary 2.57 gives576

the desired result.577
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Thus, a general closed convex set C can be specified by giving a set of generators for its lineality space578

lin(C), and the extreme points and vectors spanning the extreme rays of the set C ∩ lin(C)⊥. In Section 2.5,579

we will see that polyhedra are precisely those convex sets C that have a finite number of extreme points and580

extreme rays for C ∩ lin(C)⊥. So we see that polyhedra are especially easy to describe intrinsically: simply581

specify the finite list of extreme points, vectors spanning the extreme rays and a finite list of generators of582

lin(C).583

2.3.3 A remark about extrinsic and intrinsic descriptions584

You may have already observed that although a closed convex set can be represented as the intersection of585

halfspaces, such a representation is not unique. For example, consider the circle in R2. You can represent586

it by intersecting all its tangent halfspaces. On the other hand, if you throw away any finite subset of587

these halfspaces, you still get the same set. In fact, there is a representation which uses only countably588

many halfspaces. Thus, the same convex set can have many different representations as the intersection of589

halfspaces. Moreover, there is usually no way to choose a “canonical” representation, i.e., there is no set of590

representating halfspaces such that any representation will always include this “canonical” set of halfspaces591

(this situation will get a little better with polyhedra).592

On the other hand, the intrinsic representation for a closed convex set is more “canonical”. To begin
with, consider the compact case. We express a compact C as conv(ext(C)). We cannot remove any extreme
point, because it cannot be represented as the convex combination of other points. Thus, this representation
is unique/minimal/canonical in the sense that for any X such that C = conv(X), we must have ext(C) ⊆ X.
With closed, convex sets that are pointed, we have a little more flexibility in choosing the representation
because one can choose a different set of vectors to span the extreme rays. Even so, upto scaling, the
representation is unique. More precisely, suppose C is a closed, convex, pointed set that we express as

C = conv(E) + cone(R),

where E = ext(C) and R is set of vectors each of which spans a different extreme ray of rec(C) and every
extreme ray is spanned by some vector in R. Now, if we find another representation

C = conv(E′) + cone(R′),

for some sets E′, R′ ⊆ Rd, then we must have593

(i) E ⊆ E′ and594

(ii) for every r ∈ R, there must be some nonnegative scaling of r present in R′.595

Finally with closed, convex sets that are not pointed, we get an additional level of flexibility because of the
non-trivial lineality space. Even so, there exists a canonical triple of sets E,R,L ⊆ Rd (see Theorem 2.59),
such that

C = conv(E) + cone(R) + span(L)
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such that for any other triple, E′, R′, L′ satisfying

C = conv(E′) + cone(R′) + span(L′),

we must have596

(i) for every v ∈ E, there exists v′ ∈ E′ such that v − v′ ∈ lin(C),597

(ii) for every r ∈ R, there exists r′ ∈ R′ and λ ≥ 0 such that r− λr′ ∈ lin(C), and598

(iii) span(L) = span(L′) = lin(C).599

The same thing can be said about the extrinsic and intrinsic descriptions of an affine subspace: conditions600

3. and 4. in Theorem 2.16, or a linear subspace: conditions 2. and 3. in Theorem 2.12.601

2.4 Combinatorial theorems: Helly-Radon-Carathéodory602

We will discuss three foundational results that expose combinatorial aspects of convexity. We begin with603

Radon’s Theorem.604

Theorem 2.60 (Radon’s Theorem). Let X ⊆ Rd be a set of size at least d+ 2. Then X can be partitioned605

as X = X1 ]X2 into nonmpety sets X1, X2, such that conv(X1) ∩ conv(X2) 6= ∅.606

Proof. Since we can have at most d+1 affinely independent points in Rd (see condition 2. in Proposition 2.15),
and X has at least d + 2 points, there exists a subset {x1, . . . ,xk} ⊆ X such that {x1, . . . ,xk} is affinely
dependent. By using characterization 5. in Proposition 2.15, there exist multipliers λ1, . . . , λk ∈ R, not all
zero, such that λ1+. . .+λk = 0 and λ1x

1+. . . λkx
k = 0. Define P := {i : λi ≥ 0} andN := {i : λi < 0}. Since

the λi’s are not all zero and λ1+. . .+λk = 0, P and N both contain indices such that corresponding multiplier
is non-zero. Moreover,

∑
i∈P λi =

∑
i∈N (−λi) since λ1 + . . . + λk = 0, and

∑
j∈P λjx

j =
∑
j∈N (−λj)xj

since λ1x
1 + . . .+ λkx

k = 0. Thus, we obtain that

y =
∑
j∈P

λj∑
i∈P λi

xj =
∑
j∈N

(−λj)∑
i∈N (−λi)

xj ,

showing that y ∈ conv(XP ) ∩ conv(XN ) where XP = {xi : i ∈ P} and XN = {xi : i ∈ N}. One can now607

simply define X1 = XP and X2 = X \XP . Note that X1, X2 are nonempty because P and N are nonempty608

sets.609
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610

An application to learning theory: VC-dimension of halfspaces. An important concept in learn-
ing theory is the Vapnik-Çervonenkis (VC) dimension of a family of subsets [5]. Let F be a family of
subsets of Rd (possibly infinite).

Definition 2.61. A set X ⊆ Rq is said to be shattered by F , if for every subset X ′ ⊆ X, there exists a
set F ∈ F such that X ′ = F ∩X. The VC-dimension of F is defined as

sup{m ∈ N : there exists a set X ⊆ Rd of size m that can be shattered by F .}

Proposition 2.62. Let F be the family of halfspaces in Rd. The VC-dimension of F is d+ 1.

Proof. For any m ≤ d+ 1, let X be a set of m affinely independent points. Now, for any subset X ′ ⊆ X,
we claim that conv(X ′) ∩ conv(X \X ′) = ∅ (Verify!!). When we study polyhedra in Section 2.5, we will
see that conv(X ′) and conv(X \ X ′) are compact convex sets. By Problem 7, there exists a separating
hyperplane for these two sets, giving a halfspace H such that X ′ = H ∩X.
Let m ≥ d+ 2. Consider any set X with m points. By Theorem 2.60, one can partition X = X1]X2 with
X1, X2 nonempty such that there exists y ∈ conv(X1) ∩ conv(X2). Let X ′ = X1. Consider any halfspace
H such that X ′ ⊆ H. Since H is convex, y ∈ H. By Problem 11 in “HW for Week IV”, we obtain that
H ∩X2 6= ∅. Thus, X cannot be shattered by the family of halfspaces in Rd.

See Chapters 12 and 13 of [2] for more on VC dimension.

611

An extremely important corollary of Radon’s Theorem is known as Helly’s theorem concerning the612

intersection of a family of convex sets.613

Theorem 2.63 (Helly’s Theorem). Let X1, . . . , Xk ⊆ Rd be a family of convex sets. If X1 ∩ . . . ,∩Xk = ∅,614

then there is a subfamily Xi1 , . . . , Xim for some m ≤ d+ 1, with ih ∈ {1, . . . , k} for each h = 1, . . . ,m such615

that Xi1 ∩ . . . ,∩Xim = ∅. Thus, there is a subfamily of size at most d + 1 that already certifies the empty616

intersection.617

Proof. We prove by induction on k. The base case is if k ≤ d + 1, then we are done. Assume we know618

the statement to be true for all families of convex sets with k̄ elements for some k̄ ≥ d + 1. Consider a619

family of k̄ + 1 convex sets X1, X2, . . . , Xk̄+1. Define a new family C1, . . . , Ck̄, where Ci = Xi if i ≤ k̄ − 1620

and Ck̄ = Xk̄ ∩ Xk̄+1. Since ∅ = X1 ∩ . . . ∩ Xk̄+1 = C1 ∩ . . . ∩ Ck̄, we can use the induction hypothesis621

on this new family and obtain a subfamily Ci1 , . . . , Cim such that Ci1 ∩ . . . ∩ Cim = ∅ and m ≤ d + 1. If622

m ≤ d or none of the Cih , h = 1, . . . ,m equals Ck̄, then we are done. So we assume that m = d + 1 and623

Cim = Ck̄ = Xk̄ ∩Xk̄+1.624

To simplify notation, let us relabel everything and define Dh := Cih = Xih , h = 1, . . . , d and Dd+1 = Xk̄

and Dd+2 = Xk̄+1. We thus know that D1 ∩ . . . ∩Dd+2 = ∅. We may assume that each subfamily of d+ 1
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sets from D1, . . . , Dd+2 has a nonempty intersection, because otherwise we will be done. Let these common
intersection points be

xi ∈ ∩h6=iDh, i = 1 , . . . , d+ 2.

By Theorem 2.60, there exists a partition {1, . . . , d + 2} = L ] R where L,R are nonempty sets, such that625

there exists y ∈ conv({xi}i∈L) ∩ conv({xi}i∈R). Now, we claim that y ∈ Dh for each h ∈ {1, . . . , d + 2}626

arriving at a contradiction to D1 ∩ . . . ∩Dd+2 = ∅. Indeed, Consider any h? ∈ {1, . . . , d + 2}. Either L or627

R does not contain it. Suppose L does not contain it. Then for each i ∈ L, xi ∈ ∩h6=iDh ⊆ Dh? because628

i 6= h?. Since Dh? is convex, this shows that y ∈ conv({xi}i∈L) ⊆ Dh? .629

A corollary for infinite families is often useful, as long as we assume compactness for the elements in the630

family.631

Corollary 2.64. Let X be a (possibly infinite) family of compact, convex sets. If ∩X∈XX = ∅, then there632

is a subfamily Xi1 , . . . , Xim for some m ≤ d + 1, with ih ∈ {1, . . . , k} for each h = 1, . . . ,m such that633

Xi1 ∩ . . . ,∩Xim = ∅. Thus, there is a subfamily of size at most d + 1 that already certifies the empty634

intersection.635

Proof. By a standard result in topology, if the intersection of an infinite family of compact sets is empty,636

then there is a finite subfamily whose intersection is also empty. One can now apply Theorem 2.63 to this637

finite subfamily and obtain a subfamily of is at most d+ 1.638
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639

Application to centerpoints. Helly’s theorem can be used to extend the notion of median to distri-
butions on Rd with d ≥ 2. Let µ be any probability distribution on Rd. For any point x ∈ Rd, define

fµ(x) := inf{µ(H) : H halfspace such that x ∈ H}.

Define the centerpoint or median with respect µ as any x in the set Cµ := arg maxx∈Rd fµ(x). It can be
shown that this set is nonempty for all probability distributions µ. For d = 1, this gives the standard
notion of a median, and one can show that for any probability distribution µ on R, fµ(x) = 1

2 for any
centerpoint/median x. In higher dimensions, unfortunately, one cannot guarantee a value of 1

2 . In fact,
given the uniform distribution on a triangle in R2, one can show that the centroid x of the triangle is the
unique centerpoint, and has value fµ(x) = 4

9 <
1
2 . So can one guarantee any lower bound? Or can we find

distributions whose centerpoint values are arbitrarily low? Grünbraum [4] proved a lower bound for the
value of a centerpoint, irrespective of the distribution. The only assumption is a mild regularity condition
on the distribution: for any halfspace H and any δ > 0, there exists a closed halfspace H ′ ⊆ Rd \H such
that µ(H ′) ≥ µ(Rd \H)− δ.

Theorem 2.65. Let µ be any probability distribution on Rd satisfying the above assumption. There
exists a point x ∈ Rd such that fµ(x) ≥ 1

d+1 .

Proof. Given any α ∈ R, let Hα be the set of all halfspaces H such that µ(H) ≥ α. It is not hard to
check that if α > 0, then Dα := ∩H∈HαH is a compact, convex set. Indeed, for any coordinate indexed
by i = 1, . . . , d, there must exist some δi1, δ

i
2 such that the halfspaces Hi

1 := {x ∈ Rd : xi ≤ δi1} and
Hi

2 := {x ∈ Rd : xi ≥ δi2} satisfy µ(Hi
1) ≥ α and µ(Hi

2) ≥ α. Thus, Dα is contained in the box
{x ∈ Rd : δi2 ≤ xi ≤ δi2, i = 1, . . . , d}.
We now claim that for any x ∈ Dα, we have fµ(x) ≥ 1− α. To see this, consider any halfspace H = {y ∈
Rd : 〈a,y〉 ≤ δ that contains x ∈ Dα. We will show that µ(Rd \H) ≤ α. Indeed, if µ(Rd \H) > α, then
some halfspace H ′ contained in Rd \H also has mass at least α. This would imply that H ′ contains all of
Dα and, therefore, x ∈ H ′. But since H ′ ⊆ Rd \H, this contradicts the fact that x ∈ H.
Therefore, it suffices to show that D d

d+1 +ε is nonempty for every ε > 0, because using compactness

∩ε>0D d
d+1 +ε is nonempty, and any point x in this set will satisfy fµ(x) ≥ 1

d+1 .

Now let’s fix an ε > 0. We want to show that D d
d+1 +ε is nonempty. By standard measure-theoretic

arguments, there exists a ball B centered at the origin such that µ(B) ≥ 1− ε
2 and D d

d+1 +ε ⊆ B, because

Dα := ∩H∈HαH is a compact.

Define C = {B ∩H : H is a closed half space with µ(H) ≥ d
d+1 + ε}. Thus, C is a family of compact sets

such that D d
d+1 +ε =

⋂{C : C ∈ C}. For any subset {C1, . . . , Ch(S)} ⊆ C of size d+ 1, we claim

µ(Cc1 ∪ . . . ∪ Ccd+1) ≤ 1− (d+ 1)
ε

2
.

This is because each Cci = Bc ∪Hc
i for some half space Hi satisfying µ(Hc

i ) ≤ 1
d+1 − ε. Since µ(Bc) ≤ ε

2 ,

we obtain that µ(Cci ) ≤ 1
d+1 − ε

2 . Therefore,

µ(C1 ∩ . . . ∩ Ch(S)) = 1− (µ(Cc1 ∪ . . . Cch(S))) ≥ 1− (1− (d+ 1)
ε

2
) = (d+ 1)

ε

2
> 0.

This implies that C1 ∩ . . . ∩ Ch(S) 6= ∅. By Corollary 2.64,
⋂{C : C ∈ C} is nonempty and so D d

d+1 +ε is

nonempty.

640
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Another useful theorem is Carathéodory’s theorem which says that if a point x can be expressed as the641

convex combination of some other set X ⊆ Rd of points, then there is a subset of X ′ ⊆ X of size at most642

d+ 1 such that x ∈ conv(X ′). We state the conical version first, and then the convex version.643

Theorem 2.66 (Carathéodory’s Theorem – cone version). Let X ⊆ Rd (not necessarily convex) and let644

x ∈ cone(X). There exists a subset X ′ ⊆ X such that X ′ is linearly independent (and thus, |X ′| ≤ d), and645

x ∈ cone(X ′).646

Proof. Since x ∈ cone(X), by Theorem 2.11, we can find a finite set {x1, . . . ,xk} ⊆ X such that x ∈
cone({x1, . . . ,xk}). Choose a minimal such set, i.e., there is not strict subset of {x1, . . . ,xk} whose conical
hull contains x. This implies that x = λ1x

1 + . . .+λkx
k for some λi > 0 for each i = 1, . . . k. We claim that

x1, . . . ,xk are linearly independent. Suppose to the contrary that there exist multipliers γ1, . . . , γk ∈ R, not
all zero, such that γ1x

1 + . . .+ γkx
k = 0. By changing the signs of the γi’s if necessary, we may assume that

there exists j ∈ {1, . . . , k} such that γj > 0. Define

θ = min
j:γj>0

λj
γj
, λ′i = λi − θγi ∀i = 1, . . . , k.

Observe that λ′i ≥ 0 for all i = 1, . . . , k and

λ′1x
1 + . . . , λ′kx

k = λ1x
1 + . . . λkx

k − θ(γ1x
1 + . . .+ γkx

k) = λ1x
1 + . . . λkx

k = x.

However, at least one of the λ′i’s is zero (corresponding to an index in arg minj:γj>0
λj
γj

), contradicting the647

minimal choice of {x1, . . . ,xk}.648

Theorem 2.67 (Carathéodory’s Theorem – convex version). Let X ⊆ Rd (not necessarily convex) and let649

x ∈ conv(X). There exists a subset X ′ ⊆ X such that X ′ is affinely independent (and thus, |X ′| ≤ d + 1),650

and x ∈ conv(X ′).651

Proof. Consider the set Y ⊆ Rd+1 defined by Y := {(y, 1) : y ∈ X)}. Now, x ∈ conv(X) is equivalent652

to saying that (x, 1) ∈ cone(Y ). We get the desired result by applying Theorem 2.66 and condition 4. of653

Proposition 2.15.654

We can finally furnish the proof of Lemma 2.26.655

Proof of Lemma 2.26. Consider a convergent sequence {xi}i∈N ⊆ cone({a1, . . . ,an}) converging to x ∈ Rd.
By Theorem 2.66, every xi is in the conical hull of some linearly independent subset of {a1, . . . ,an}. Since
there are only finitely many linearly independent subsets of {a1, . . . ,an}, one of these subsets contains
infinitely many elements of the sequence {xi}i∈N. Thus, after passing to that subsequence, we may assume
that {xi}i∈N ⊆ cone({ā1, . . . , āk}) where {ā1, . . . , āk} are linearly independent. For each xi, there exists
λi ∈ Rk+ such that xi = λi1ā

1 + . . .+ λikā
k. Since {xi}i∈N is a convergent sequence, it is also a bounded set.

This implies that {λi}i∈N is a bounded set in Rk+ because ā1, . . . , āk are all linearly independent. Thus, by
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Theorem 1.10 there is a convergent subsequence λik → λ ∈ Rk+. Note that xik = Aλik , where A ∈ Rd×k is
the matrix with ā1, . . . , āk as columns. Taking limits,

x = lim
k→∞

xik = lim
k→∞

Aλik = Aλ.

Since λ ∈ Rk+, we find that x ∈ cone({ā1, . . . , āk}) ⊆ cone({a1, . . . ,an}).656

Here is another result that proves handy in many situations.657

Theorem 2.68. Let X ⊆ Rd be a compact set (not necessarily convex). Then conv(X) is compact.658

Proof. By Theorem 2.67, every x ∈ conv(X) is the convex combination of some d + 1 points in X. Define
the following function f : Rd × . . .× Rd︸ ︷︷ ︸

d+1 times

×Rd+1 → Rd as follows:

f(y1, . . . ,yd+1,λ) = λ1y
1 + . . .+ λd+1y

d+1.

It is easily verified that f is a continuous function (each coordinate of f(·) is a bilinear quadratic function
of the input). We now observe that conv(X) is the image of X × . . .×X︸ ︷︷ ︸

d+1 times

×∆d+1 under f , where

∆d+1 := {λ ∈ Rd+1
+ : λ1 + . . .+ λd+1 = 1}.

Since X and ∆d+1 are compact sets, we obtain the result by applying Theorem 1.12.659

2.5 Polyhedra660

Recall that a polyhedron is any convex set that can be obtained by intersecting a finite number of halfspaces661

(Definition 2.22). Polyhedra, in a sense, are the nicest convex sets to work with because of this finiteness662

property. For example, our first result will be that a polyhedron can have only finitely many extreme points.663

Even so, one thing to keep in mind is that the same polyhedron can be described as the intersection664

of two completely different finite families of halfspaces. This brings into sharp focus the non-uniqueness of665

extrinsic descriptions discussed in Section 2.3.3. Consider the following systems of halfspace/inequalities.666

−x1 ≤ 0 2x1 + x2 ≤ 0
x1 + x2 ≤ 0 −x1 + x2 ≤ 0
x1 − x2 ≤ 0 x1 − 2x2 ≤ 0
−x1 − x2 − x3 ≤ 0 x1 − 2x3 ≤ 0

x2 + x3 ≤ 5 2x1 + x2 + 2x3 ≤ 10

Both these systems describe the same polyhedron P = conv{(0, 0, 0), (0, 0, 5)} in R3. However, if a polyhe-667

dron is given by its list of extreme points and extreme rays, this ambiguity disappears. Moreover, having668
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these two alternate extrinsic/intrinsic descriptions is very useful as many properties become easier to see669

in one description, compared to the other description. Let us, therefore, start by making some important670

observations about extreme points and extreme rays of a polyhedron.671

Definition 2.69. Let P be a polyhedron. Let A ∈ Rm×d with rows a1, . . . ,am and b ∈ Rm such that672

P = {x ∈ Rd : Ax ≤ b}. Given any x ∈ P , define tight(x, A,b) := {i : 〈ai,x〉 = bi}. For brevity, when673

A and b are clear from the context, we will shorten this to tight(x). We also use the notation Atight(x) to674

denote the submatrix formed by taking the rows of A indexed by tight(x). Similarly, btight(x) will denote675

the subvector of b indexed by tight(x).676

Theorem 2.70. Let P = {x ∈ Rd : Ax ≤ b} be a polyhedron given by A ∈ Rm×d and b ∈ Rm. Let x ∈ P .677

Then, x is an extreme point of P if and only if Atight(x) has rank equal to d, i.e., the rows of A indexed by678

tight(x) span Rd.679

Proof. (⇐) Suppose Atight(x) has rank equal to d; we want to establish that x is an extreme point. Consider

any x1,x2 ∈ P such that x = x1+x2

2 . For each i ∈ tight(x), 〈ai,x1〉 ≤ bi and similarly, 〈ai,x2〉 ≤ bi. Now,
we observe that

bi = 〈a1,x〉 =
〈ai,x1〉

2
+
〈ai,x2〉

2
≤ bi.

Thus, the inequality must be an equality. Therefore, for each i ∈ tight(x), 〈ai,x1〉 = bi and similarly,680

〈ai,x2〉 = bi. In other words, we have that Atight(x)x = btight(x), and Atight(x)x
j = btight(x) for j = 1, 2.681

Since rank of Atight(x) = d, the system of equations must have a unique solution. This means x = x1 = x2.682

This shows that x is extreme.683

(⇒) Suppose to the contrary that x is extreme and Atight(x) has rank strictly less than d (note that its

rank is less than or equal to d because it has d columns). Thus, there exists a non-zero r ∈ Rd such that
Atight(x)r = 0. Define

ε := min{min{bj − 〈a
j ,x〉

〈aj , r〉 : 〈aj , r〉 > 0},min{bj − 〈a
j ,x〉

−〈aj , r〉 : 〈aj , r〉 < 0}}

Note that ε > 0. We now claim that x1 := x + εr ∈ P and x2 := x − εr ∈ P . This would show that684

x = x1+x2

2 with x1 6= x2 (because r 6= 0 and ε > 0), contradicting extremality.685

To finish the proof, we need to check that Ax1 ≤ b and Ax2 ≤ b. We will do the calculations for x1 –686

the calculations for x2 are similar. Consider any j ∈ {1, . . . ,m}. If j ∈ tight(x), the since Atightr = 0, we687

obtain that 〈aj ,x1〉 = 〈aj ,x〉+ ε〈aj , r〉 = 〈aj ,x〉 = bj . If j 6∈ tight(x), then we consider two cases:688

Case 1: 〈aj , r〉 > 0. Since ε ≤ bj−〈aj ,x〉
〈aj ,r〉 , we obtain that 〈aj ,x1〉 = 〈aj ,x〉+ ε〈aj , r〉 ≤ bj .689

Case 2: 〈aj , r〉 < 0. In this case, 〈aj ,x1〉 = 〈aj ,x〉+ ε〈aj , r〉 < bj , simply because ε > 0 and 〈aj , r〉 < 0.690

This immediately gives the following.691
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Corollary 2.71. Any polyhedron P ⊆ Rd has a finite number of extreme points.692

Proof. Let A ∈ Rm×d and b ∈ Rm be such that P = {x ∈ Rd : Ax ≤ b}. From Theorem 2.70, for any693

extreme point, Atight(x) has rank d. There are only finitely many subsets I ⊆ {1, . . . ,m} such that the694

submatrix AI is of rank d. Moreover, for any I ⊆ {1, . . . ,m} such that AI is rank d such that AIx = bI has695

a solution, the set of solutions to AIx = bI is unique. This shows that there are only finitely many extreme696

points.697

What about the extreme rays? First we define polyhedral cones.698

Definition 2.72. A convex cone that is also a polyhedron is called a polyhedral cone.699

Proposition 2.73. Let D be a convex cone. D ⊆ Rd is a polyhedral cone if and only if there exists a matrix700

A ∈ Rm×d for some m ∈ N such that D = {x ∈ Rd : Ax ≤ 0}.701

Proof. We simply have to show the forward direction, the reverse is easy. Assume D is a polyhedral cone.702

Thus, it is polyhedron and so there exists a matrix A ∈ Rm×d and b ∈ Rm for some m ∈ N such that703

D = {x : Ax ≤ b}. Since D is a closed, convex cone (closed because all polyhedra are closed), rec(D) = D.704

By Problem 1 in “HW for Week IV”, we obtain that D = rec(D) = {x : Ax ≤ 0}.705

Problem 1 in “HW for Week IV” also immediately implies the following.706

Proposition 2.74. If P is a polyhedron, then rec(P ) is a polyhedral cone.707

Theorem 2.75. Let D = {x : Ax ≤ 0} be a polyhedral cone and let r ∈ D. r spans an extreme ray if and708

only if Atight(r) has rank d− 1.709

Proof. (⇐) Let Atight(r) have rows ā1, . . . , āk. Each Fi := D ∩ {y : 〈āi,y〉 = 0} for each i = 1, . . . , k is an710

exposed face of D. By Problem 13 in “HW for Week III”, F := ∩ki=1Fi is a face of D. Since Atight(r) has711

rank d − 1, the set {x : Atight(x)x = 0} is a 1-dimensional linear subspace. Since F ⊆ {x : Atight(x)x = 0},712

F is a 1-dimensional face of D and hence an extreme ray. Note that r ∈ F and thus r spans F .713

(⇒) Suppose r spans the 1-dimensional face F . Recall that this means that any x ∈ F is a scaling of r.
Rank of Atight(r) cannot be d since then r is an extreme point of D and r = 0 by Problem 3 in “HW for
Week IV”. This would contradict that r spans an extreme ray of D. Thus, rank of Atight(r) ≤ d− 1. If it is
strictly less, then consider any r′ ∈ {x : Atight(x)x = 0} that is linearly independent to r – such an r′ exists
if rank of Atight(r) ≤ d− 2. Define

ε := min{min{−〈a
j , r〉

〈aj , r′〉 : 〈aj , r′〉 > 0},min{ −〈a
j , r〉

−〈aj , r′〉 : 〈aj , r′〉 < 0}}

Note that ε > 0. We now claim that r1 := r + εr′ ∈ D and r2 := r − εr′ ∈ D. This would show that714

r = r1+r2

2 . Moreover, since r′ and r are linearly independent, r1, r2 are not scalings of r. This contradicts715

Proposition 2.55.716
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To finish the proof, we need to check that Ar1 ≤ 0 and Ar2 ≤ 0. This is the same set of calculations as717

in the proof of Theorem 2.70.718

Analogous to Corollary 2.71, we have:719

Corollary 2.76. Any polyhedral cone D has finitely many extreme rays.720

2.5.1 The Minkowski-Weyl Theorem721

We can now state the first part of the famous Minkowski-Weyl theorem.722

Theorem 2.77 (Minkowski-Weyl Theorem – Part I). Let P ⊆ Rd be a polyhedron. Then there exist finite723

sets V,R ⊆ Rd such that P = conv(V ) + cone(R).724

Proof. Let L be a finite set of vectors spanning lin(P ) (L is taken as the empty set if lin(P ) = {0}). Note725

that lin(P ) = cone(L ∪ −L). Define P̂ = P ∩ lin(P )⊥. By Problem 1 (iii) in “HW for Week V”, P̂ is also a726

polyhedron. By Corollary 2.71, we obtain that V := ext(P̂ ) is a finite set. Moreover, by Proposition 2.74,727

rec(P̂ ) is a polyhedral cone. By Corollary 2.76, extr(rec(P̂ )) is a finite set. Define R = extr(rec(P̂ ))∪L∪−L.728

By Theorem 2.59, P = conv(ext(P̂ )) + cone(rec(P̂ )) + lin(P ) = conv(V ) + cone(R).729

We now make an observation about polars.730

Lemma 2.78. Let V,R ⊆ Rd be finite sets and let X = conv(V ) + cone(R). Then X is a closed, convex set.731

Proof. conv(V ) is compact, by Theorem 2.68, and cone(R) is closed by Lemma 2.26. By Problem 6 in “HW732

for Week I/II” we obtain that X = conv(V ) + conv(R) is closed. Since the Minkowski sum of convex sets is733

convex (property 3. in Theorem 2.3), X is also convex.734

Theorem 2.79. Let V = {v1, . . . ,vk} ⊆ Rd, and R = {r1, . . . , rn} ⊆ Rd with k ≥ 1 and n ≥ 0. Let
X = conv(V ) + cone(R). Then

X◦ =

{
y ∈ Rd :

〈vi,y〉 ≤ 1 i = 1, . . . , k
〈rj ,y〉 ≤ 0 j = 1, . . . , n

}
.

Proof. Define X̃ :=

{
y ∈ Rd :

〈vi,y〉 ≤ 1 i = 1, . . . , k
〈ri,y〉 ≤ 0 i = 1, . . . , n

}
. We first verify that X̃ ⊆ X◦, i.e., 〈y,x〉 ≤ 1 for

all y ∈ X̃ and x ∈ X. By definition of X, we can write x =
∑k
i=1 λiv

i +
∑n
j=1 µjr

j for some λi, µj ≥ 0 such

that
∑k
i=1 λi = 1. Thus,

〈x,y〉 =

k∑
i=1

λi〈vi,y〉+

n∑
j=1

µj〈rj ,y〉 ≤ 1,

since 〈vi,y〉 ≤ 1 for i = 1, . . . , k, and 〈rj ,y〉 ≤ 0 for j = 1, . . . , n.735
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To see that X◦ ⊆ X̃, consider any y ∈ X◦. Since 〈x,y〉 ≤ 1 for all x ∈ X, we must have 〈vi,y〉 ≤ 1736

for i = 1, . . . , k since vi ∈ X. Suppose to the contrary that 〈rj ,y〉 > 0 for some j ∈ {1, . . . , n}. Then there737

exists λ > 0 such that 〈v1 + λrj ,y〉 > 1. But this contradicts the fact that 〈x,y〉 ≤ 1 for all x ∈ X because738

v1 + λrj ∈ X, by definition of X. Therefore, 〈rj ,y〉 ≤ 0 for j = 1, . . . , n and thus, y ∈ X̃.739

This has the following corollary.740

Corollary 2.80. Let P be a polyhedron. Then P ◦ is a polyhedron.741

Proof. If P = ∅, then P ◦ = Rd, which is a polyhedron. Else, by Theorem 2.77, there exist finite sets742

V,R ⊆ Rd such that P = conv(V )+cone(R), with V 6= ∅. By Theorem 2.79, P ◦ is the intersection of finitely743

many halfspaces, and is thus a polyhedron.744

We now prove the converse of Theorem 2.77.745

Theorem 2.81 (Minkowski-Weyl Theorem – Part II). Let V,R ⊆ Rd be finite sets and let X = conv(V ) +746

cone(R). Then X ⊆ Rd is a polyhedron.747

Proof. The case when X is empty is trivial. So we consider X is nonempty. Take any t ∈ X and define748

X ′ = X − t. Now, it is easy to see X is polyhedron if and only if X ′ is a polyhedron (Verify!!). So it suffices749

to show that X ′ is a polyhedron. Note that X ′ = conv(V ′)+cone(R) where V ′ = V −t, which is a nonempty750

set because V is nonempty (since X is assumed to be nonempty). By Theorem 2.79, (X ′)◦ is a polyhedron.751

By Lemma 2.78, X ′ is a closed, convex set, and also 0 ∈ X ′. Therefore, X ′ = ((X ′)◦)◦ by condition 2. in752

Theorem 2.30. Applying Corollary 2.80 with P = (X ′)◦, we obtain that ((X ′)◦)◦ = X ′ is a polyhedron.753

Collecting Theorems 2.77 and 2.81 together, we have the full-blown Minkowski-Weyl Theorem.754

Theorem 2.82 (Minkowski-Weyl Theorem – full version). Let X ⊆ Rd. Then the following are equivalent.755

(i) (H-description) There exists m ∈ N, a matrix A ∈ Rm×d and a vector b ∈ Rm such that X = {x ∈756

Rd : Ax ≤ b}.757

(ii) (V-description) There exist finite sets V,R ⊆ Rd such that X = conv(V ) + cone(R).758

A compact version is often useful.759

Theorem 2.83 (Minkowski-Weyl Theorem – compact version). Let X ⊆ Rd. Then X is a bounded poly-760

hedron if and only if X is the convex hull of a finite set of points.761

Proof. Left as an exercise.762
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2.5.2 Valid inequalities and feasibility763

Definition 2.84. Let X ⊆ Rd (not necessarily convex) and let a ∈ Rd, δ ∈ R. We say that 〈a,x〉 ≤ δ is a764

valid inequality/halfspace for X if X ⊆ H−(a, δ).765

Consider a polyhedron P = {x ∈ Rd : Ax ≤ b} with A ∈ Rm×d,b ∈ Rm. For any vector y ∈ Rm+ , the766

inequality 〈yTA,x ≤ yTb is clearly a valid inequality for P . The next theorem says that all valid inequalities767

are of this form, upto a translation.768

Theorem 2.85. Let P = {x ∈ Rd : Ax ≤ b} with A ∈ Rm×d,b ∈ Rm be a nonempty polyhedron. Let769

c ∈ Rd, δ ∈ R. Then 〈c,x〉 ≤ δ is a valid inequality for P if and only if there exists y ∈ Rm+ such that770

cT = yTA and yTb ≤ δ.771

Proof. (⇐) Suppose there exists y ∈ Rm+ such that cT = yTA and yTb ≤ δ. The validity of 〈c,x〉 ≤ δ is
clear from the following relations for any x ∈ P :

〈c,x〉 = 〈yTA,x〉 = yT (Ax) ≤ yTb ≤ δ,

where the first inequality follows from the fact that x ∈ P implies Ax ≤ b and y is nonnegative.772

(⇒) Let 〈c,x〉 ≤ δ be a valid inequality for P . Suppose to the contrary that there is no nonnegative
solution to cT = yTA and yTb ≤ δ. This is equivalent to saying that the following system has no solution
in y, λ:

ATy = c, bTy + λ = δ, y ≥ 0, λ ≥ 0.

Setting this up in matrix notation, we have no nonnegative solutions to[
AT 0

bT 1

] [
y
λ

]
=

[
c
δ

]
.

By Farkas’ Lemma (Theorem 2.25), there exists u = (ū,ud+1) ∈ Rd+1 such that773

ūTAT + ud+1b
T ≤ 0, ud+1 ≤ 0, and ūT c + ud+1δ > 0. (2.1)

We now consider two cases:774

Case 1: ud+1 = 0. Plugging into (2.1), we obtain ūTAT ≤ 0, i.e. Aū ≤ 0, and 〈c, ū〉 > 0. By Problem 1 in775

“HW for Week IV”, ū ∈ rec(P ). Consider any x ∈ P (we assume P is nonempty). Let µ = 1+(δ−〈c,x〉)
〈c,ū〉 > 0.776

Now x + µū ∈ P since ū ∈ rec(P ). However, 〈c,x + µū〉 = δ+ 1 > δ, contradicting that 〈c,x〉 ≤ δ is a valid777

inequality for P .778

Case 2: ud+1 < 0. By rearranging (2.1), we have Aū ≤ (−ud+1)b and 〈c, ū〉 > (−ud+1)δ. By setting779

x = ū
−ud+1

, obtain that x ∈ P and 〈c,x〉 > δ, contradicting that 〈c,x〉 ≤ δ is a valid inequality for P .780
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Definition 2.86. Let c ∈ Rd and δ1, δ2. If δ1 ≤ δ2, then the inequality/halfspace 〈c,x〉 ≤ δ1 is said to781

dominate the inequality/halfspace 〈c,x〉 ≤ δ2.782

Remark 2.87. Let P = {x ∈ Rd : Ax ≤ b} with A ∈ Rm×d,b ∈ Rm be a polyhedron. Then 〈c,x〉 ≤ δ is783

called a consequence of Ax ≤ b if there exists y ∈ Rm+ such that cT = yTA and δ = yTb. Another way to784

think of Theorem 2.85 is that it says the geometric property of being a valid inequality is the same as the785

algebraic property of being a consequence:786

[Alternate version of Theorem 2.85] Let P = {x ∈ Rd : Ax ≤ b} be a nonempty polyhedron.787

Then 〈c,x〉 ≤ δ is a valid inequality for P if and only if 〈c,x〉 ≤ δ is dominated by a consequence788

of Ax ≤ b.789

A version of Theorem 2.85 for empty polyhedra is also useful. It can be interpreted as the existence of a790

short certificate of infeasibility of polyhedra.791

Theorem 2.88. Let P = {x ∈ Rd : Ax ≤ b} with A ∈ Rm×d,b ∈ Rm be a polyhedron. Then P = ∅ if and792

only if 〈0,x〉 ≤ −1 is a consequence of Ax ≤ b.793

Proof. It is easy to see that if 〈0,x〉 ≤ −1 is a consequence of Ax ≤ b then P = ∅, because any point that794

satisfies Ax ≤ b must satisfy every consequence of it, and no point satisfies 〈0,x〉 ≤ −1.795

So now assume P = ∅. This means that there is no solution to Ax ≤ b. This is equivalent to saying that
there is no solution to Ax1 − Ax2 + s = b with x1,x2, s ≥ 0.2 In matrix notation, this means there are no
nonnegative solutions to [

A −A I
]  x1

x2

s

 = b.

By Farkas’ Lemma (Theorem 2.25), there exists u ∈ Rm such that

uTA ≤ 0, uT (−A) ≤ 0, u ≤ 0, and uTb > 0.

Define y = −u
uTb

≥ 0. Then yTA = 0 and yTb = −1, showing that 〈0,x〉 ≤ −1 is a consequence of796

Ax ≤ b.797

2.5.3 Faces of polyhedra798

Faces for polyhedra are very structured. Firstly, every face is an exposed face – something that is not true for799

general closed, convex sets. Secondly, there is an algebraic characterization of faces in terms of the describing800

inequalities of a polyhedron.801

Theorem 2.89. Let P = {x ∈ Rd : Ax ≤ b} with A ∈ Rm×d,b ∈ Rm. Let F ⊆ P such that F 6= ∅, P . The802

following are equivalent.803

2This is easily seen by the the transformation x = x1 − x2.
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(i) F is a face of P .804

(ii) F is an exposed face of P .805

(iii) There exists a subset I ⊆ {1, . . . ,m} such that F = {x ∈ P : AIx = bI}.806

Proof. (i) ⇒ (ii). Consider x̄ ∈ relint(F ) (which exists by Exercise 4). Since F is a proper face, by807

Theorem 2.40, x̄ ∈ relbd(P ). By Theorem 2.39, there exists a supporting hyperplane at x̄ given by 〈a,x〉 ≤ δ.808

Let {y ∈ P : 〈a,y〉 = δ} be the corresponding exposed face. Since x ∈ relint(F ), one can show that809

F ⊆ {y ∈ P : 〈a,y〉 = δ} (Verify!!). Thus, there exists an exposed face containing F . Let F ′ be the minimal810

(with respect to set inclusion) exposed face of P that contains F , i.e., for any other exposed face F ′′ ⊇ F ,811

we have F ′ ⊆ F ′′. Let this exposed face F ′ by defined by the valid inequality 〈c1,x〉 ≤ δ1 for P .812

If F = F ′, then we are done because F ′ is an exposed face. Otherwise, F ( F ′, and so F is a face of813

F ′. Therefore, x̄ ∈ relbd(F ′). Applying Theorem 2.39 to F ′ and x̄, we obtain c2 ∈ Rd, δ2 ∈ R such that814

F ⊆ F ′ ∩ {y ∈ Rd : 〈c2,y〉 = δ2}, and there exists ȳ ∈ F ′ such that 〈c2, ȳ〉 < δ2. Using Theorem 2.83, we815

find finite sets V,R such that P = conv(V ) + cone(R). Notice that since P ⊆ H−(c1, δ1), we must have816

〈c1,v〉 ≤ δ1 for all v ∈ V and 〈c1, r〉 ≤ 0 for all r ∈ R.817

Claim 1. One can always choose λ ≥ 0 such that λc1 + c2, λδ1 + δ2 satisfy

〈λc1 + c2,v〉 ≤ λδ1 + δ2 for all v ∈ V, 〈λc1 + c2, r〉 ≤ 0, for all r ∈ R.

Proof of Claim. The relations can be rearranged to say818

〈c2,v〉 − δ2 ≤ λ(δ1 − 〈c1,v〉) for all v ∈ V 〈c2, r〉 ≤ λ(−〈c1, r〉), for all r ∈ R. (2.2)

First, recall that 0 ≤ δ1 − 〈c1,v〉 for all v ∈ V and 0 ≤ −〈c1, r〉 for all r ∈ R. Notice that since
F ′ ⊆ H−(c2, δ2), if 〈c1,v〉 = δ1 for some v ∈ V , this means that v ∈ F ′ and therefore 〈c2,v〉 ≤ δ2.
Similarly, if 〈c1, r〉 = 0 for some r ∈ R, this means that r ∈ rec(F ′) and therefore 〈c2, r〉 ≤ 0. Thus, the
following choice of

λ := max

{
0, max

v∈V :〈δ1−〈c1,v〉>0

〈c2,v〉 − δ2
δ1 − 〈c1,v〉 , max

r∈R:−〈c1,r〉>0

〈c2, r〉
−〈c1, r〉

}
satisfies (2.2).819

Using the λ from the above claim, X = P ∩ {y ∈ Rd : 〈λc1 + c2,y〉 = λδ1 + δ2} is an exposed face of820

P containing F . Moreover, 〈λc1 + c2,y〉 ≤ λδ1 + δ2 is valid for F ′ because the inequality is a nonnegative821

combination of the two valid inequalities 〈c1, ȳ〉 ≤ δ1, 〈c2, ȳ〉 ≤ δ2 for F ′. Therefore, X ⊆ F ′. But ȳ satisfies822

this inequality strictly, because it satisfies 〈c2, ȳ〉 < δ2, so X ( F . This contradicts the minimality of F ′.823
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(ii) ⇒ (iii). Let c ∈ Rd, δ ∈ R be such that F = P ∩ {x : 〈c,x〉 = δ}. By Theorem 2.85, there exists824

y ∈ Rm+ such that cT = yTA and δ ≥ yTb. Consider any x ∈ F (recall that F is assumed to be nonempty).825

Then826

δ = 〈c,x〉 = 〈yTA,x〉 = yTAx ≤ yTb ≤ δ. (2.3)

Thus, equality must hold everywhere and yTb = δ. Moreover, yTAx = yTb for all x ∈ F , which implies827

that yT (Ax − b) = 0 for all x ∈ F . This last relation says that for any i ∈ {1, . . . ,m}, if yi > 0 then828

〈ai,x〉 = bi for every x ∈ F . Thus, setting I = {i : yi > 0}, we immediately obtain that AIx = bI for all829

x ∈ F . Consider any x̄ ∈ P satisfying AI x̄ = bI . Therefore, yTAx̄ = yTb since yi = 0 for i 6∈ I. Therefore,830

cTx = yTAx̄ = yTb = δ, and thus, x ∈ P ∩ {x : 〈c,x〉 = δ} = F .831

(iii) ⇒ (i). By definition, F = ∩i∈IFi, where Fi = {x ∈ P : 〈ai,x〉 = bi}. By definition, each Fi is an832

exposed face, and thus a face. By Problem 13 in “HW for Week III”, the intersection of faces is a face and833

thus, F is a face.834

Here are some nice consequences of Theorem 2.89.835

Theorem 2.90. The following are both true.836

1. Every polyhedron has finitely many faces.837

2. Every face of a polyhedron is a polyhedron.838

2.5.4 Implicit equalities, dimension of polyhedra and facets839

Given a polyhedron P = {x : Ax ≤ b} how can we decide the dimension of P? The concept of implicit840

equalities is important for this.841

Definition 2.91. Let A ∈ Rm×d and b ∈ Rm. We say that the inequality 〈ai,x〉 ≤ bi for some i ∈ {1, . . . ,m}842

is an implicit equality for the polyhedron P = {x : Ax ≤ b} if P ⊆ {x : 〈ai,x〉 = bi}, i.e., P ⊆ H(ai,bi). We843

denote the subsystem of implicit equalities of Ax ≤ b by A=x ≤ b=. We will also use A+x ≤ b+ to denote844

the inequalities in Ax ≤ b that are NOT implicit equalities.845

Note that for each i such that 〈ai,x〉 ≤ b is not an implicit equality, there exists x ∈ P such that846

〈ai,x〉 < bi.847

Exercise 6. Let P = {x : Ax ≤ b}. Show that there exists x̄ ∈ P such that A=x̄ = b= and A+x̄ < b+.848

Show the stronger statement that relint(P ) = {x ∈ Rd : A=x = b=, A+x < b+}.849

We can completely characterize the affine hull of a polyhedron, and consequently its dimension, in terms850

of the implicit equalities.851

Proposition 2.92. Let A ∈ Rm×d and b ∈ Rm and P = {x : Ax ≤ b}. Then

aff(P ) = {x ∈ Rd : A=x = b=} = {x ∈ Rd : A=x ≤ b=}.
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Proof. It is easy to verify that aff(P ) ⊆ {x ∈ Rd : A=x = b=} ⊆ {x ∈ Rd : A=x ≤ b=}. We show that
{x ∈ Rd : A=x ≤ b=} ⊆ aff(P ). Consider any y satisfying A=y ≤ b=. Using Exercise 6, choose any x̄ ∈ P
such that A=x̄ = b= and A+x̄ < b+. If A+y ≤ b+, then y ∈ P ⊆ aff(P ) and we are done. Otherwise, set

µ := min
i:〈ai,y〉>bi

{
bi − 〈ai, x̄〉
〈ai,y〉 − 〈ai, x̄〉

}
.

Observe that since 〈ai,y〉 > bi > 〈ai, x̄〉 for each i considered in the minimum, we have 0 < µ < 1. One can852

check that (1− µ)x̄ + µy ∈ P . This shows that y ∈ aff(P ), because y is on the line joining two points in P ,853

namely x̄ and (1− µ)x̄ + µy.854

Combined with part 4. of Theorem 2.16, this gives the following corollary.855

Corollary 2.93. Let A ∈ Rm×d and b ∈ Rm and P = {x : Ax ≤ b}. Then

dim(P ) = d− rank(A=).

As we have seen before, a given description P = {x : Ax ≤ b} for a polyhedron may be redundant, in856

the sense, that we can remove some of the inequalities, and still have the same set P . This motivates the857

following definition.858

Definition 2.94. Let A ∈ Rm×d and b ∈ Rm. We say that the inequality 〈ai,x〉 ≤ bi for some i ∈ {1, . . . ,m}859

is redundant for the polyhedron P = {x : Ax ≤ b} if P = {x : A−ix ≤ b−i}, where A−i denotes the matrix A860

without row i and b−i is the vector b with the i-th coordinate removed. Otherwise, if P ( {x : A−ix ≤ b−i},861

then 〈ai,x〉 ≤ bi is said to be irredundant for P . The system Ax ≤ b is said to be an irredundant system if862

every inequality is irredundant for P = {x : Ax ≤ b}.863

The following characterization of facets of a polyhedron is quite useful, specially in combinatorial opti-864

mization and polyhedral combinatorics.865

Theorem 2.95. Let P = {x ∈ Rd : Ax ≤ b} be nonempty with A ∈ Rm×d,b ∈ Rm giving an irredundant866

system. Let F ⊆ P . The following are equivalent.867

(i) F is a facet of P , i.e., F is a face with dim(F ) = dim(P )− 1.868

(ii) F is maximal, proper face of P , i.e., for any proper face F ′ ⊇ F , we must have F ′ = F .869

(iii) There exists a unique i ∈ {1, . . . ,m} such that F = {x ∈ P : 〈ai,x〉 = bi} and 〈ai,x〉 ≤ bi is not an870

implicit equality.871

Proof. (i) ⇒ (ii). Suppose to the contrary that there exists a proper face F ′ ) F . Observe that F is872

a face of F ′ by Problem 15 in “HW for Week IV”, and so F is a proper face of F ′. By Lemma 2.35,873
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dim(F ′) > dim(F ) = dim(P ) − 1. So, dim(F ′) = dim(P ). This contradicts the fact that F ′ is proper face,874

by Lemma 2.35.875

(ii) ⇒ (iii). By Theorem 2.89, there exists a subset of indices I ⊆ {1, . . . ,m} such that F = {x ∈876

Rd : Ax ≤ b, AIx = bI}. If all the inequalities indexed by I are implicit equalities for P , then F = P ,877

contradicting the assumption that F is a proper face. So there exists i ∈ I such that 〈ai,x〉 ≤ bi is878

not an implicit equality. Let F ′ = {x ∈ P : 〈ai,x〉 = bi} be the face defined by this inequality; since879

〈ai,x〉 ≤ bi is not an implicit equality, F ′ is a proper face of P . Also observe that F ⊆ F ′. Hence880

F = F ′ = {x ∈ P : 〈ai,x〉 = bi} by maximality of F . To show uniqueness of i, we would like to show881

that I = {i}. We show this by exhibiting x0 ∈ F with the following property: for any j 6= i such that882

〈aj ,x〉 ≤ bj is not an implicit equality, we have 〈aj ,x0〉 < bj . To see this, let x1 ∈ P such that A=x1 = b=883

and A+x1 < b+ (such an x1 exists by Exercise 6). Since Ax ≤ b is an irredundant system, if we remove the884

inequality indexed by i, then we get some new points that satisfy the rest of the inequalities, but which violate885

〈ai,x〉 ≤ bi. More precisely, there exists x2 ∈ Rd such that A=x2 = b=, A−i+ x2 ≤ b−i+ and 〈ai,x2〉 > bi,886

where A−i+ x ≤ b−i+ denotes the system A+x ≤ b+ without the inequality indexed by i. Since 〈ai,x1〉 < bi887

and 〈ai,x2〉 > bi, there exists a convex combination of x1,x2 such that this convex combination x0 satisfies888

〈ai,x0〉 = bi. Since A=x1 = b= and A=x2 = b=, we must have A=x0 = b=. Moreover, since A+x1 < b+889

and A−i+ x2 ≤ b−i+ , we must have that for any j 6= i indexing an inequality in A+x ≤ b+, it must satisfy890

〈aj ,x0〉 < bj . Thus, we are done.891

(iii) ⇒ (i). By Theorem 2.89, F is a face. We now establish that dim(F ) = dim(P ) − 1. Let J denote892

the set of indices that index inequalities in Ax ≤ b that are not implicit equalities. Since there exists a893

unique i ∈ J such that F = {x ∈ P : 〈ai,x〉 = bi}, this means that for any j ∈ J \ i, there exists xj ∈ F894

such that 〈aj ,xj〉 < bj . Now let x0 = 1
|J |
∑
j∈J\{i} xj , and observe that x0 ∈ F and for any j ∈ J \ i, we895

have 〈aj ,x0〉 < bj . Let us describe the polyhedron F by the system Ãx ≤ b̃ that appends the inequality896

〈−ai,x〉 ≤ −bi to the system Ax ≤ b.897

Claim 2. rank(Ã=) = rank(A=) + 1.898

Proof. The properties of x0 show that the matrix Ã= is simply the matrix A= appended with ai. So it suffices899

to show that ai is not a linear combination of the rows of A=. Suppose to the contrary that ai = yTA=900

for some y ∈ Rk where k is the number of rows of A=. If bi < yTb=, then P is empty because any x ∈ P901

satisfies A=x = b=, and therefore must satisfy yTA=x = yTb= and this contradicts yTA=x = 〈ai,x〉 ≤ bi.902

If bi ≥ yTb=, then 〈ai,x〉 ≤ bi is redundant for P , as every x satisfying A=x = b= satisfies 〈ai,x〉 ≤ bi.903

Using Corollary 2.93, we obtain that dim(F ) = d− rank(Ã=) = d− rank(A=)− 1 = dim(P )− 1.904

A consequence of this characterization of facets is that full-dimensional polyhedra have a unique system905

describing them, upto scaling.906
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Definition 2.96. We say that the inequality 〈a,x〉 ≤ δ is equivalent to the inequality 〈a′,x〉 ≤ δ′ if there907

exists λ ≥ 0 such that a′ = λa and δ′ = λδ. Equivalent inequalities define the same halfspace, i.e.,908

H−(a, δ) = H−(a′, δ′).909

Theorem 2.97. Let P be a full-dimensional polyehdron. Let A ∈ Rm×d matrix, A′ ∈ Rp×d, b ∈ Rm and
b′ ∈ Rp be such that Ax ≤ b and A′x ≤ b′ are both irredundant systems describing P , i.e.,

{x ∈ Rd : Ax ≤ b} = {x ∈ Rd : A′x ≤ b′} = P.

Then both systems are the same upto permutation and scaling. More precisely, the following holds:910

1. m = p.911

2. There exists permutation σ : {1, . . . ,m} → {1, . . . ,m} such that for each i ∈ {1, . . . ,m}, 〈ai,x〉 ≤ bi912

is equivalent to 〈a′σ(i),x〉 ≤ b′σ(i).913

Proof. Left as an exercise.914

3 Convex Functions915

We now turn our attention to convex functions, as a step towards optimization. In this context, we will need916

to sometimes talk about the extended real numbers R ∪ {−∞,+∞}. One reason is that in optimization917

problems, many times a supremum may be ∞ or an infimum may be −∞, and using them on the same918

footing as the reals makes certain statements nicer, without having to exclude annoying special cases. For919

this, one needs to set up some convenient rules for arithmetic over R ∪ {−∞,+∞}:920

• x+∞ =∞ for any x ∈ R ∪ {+∞}.921

• x(+∞) = +∞ for all x > 0. We will avoid situations where we need to consider 0 ·+∞.922

• x <∞ for all x ∈ R.923

3.1 General properties, epigraphs, subgradients924

Definition 3.1. A function f : Rd → R ∪ {∞} is called convex if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y),

for all x,y ∈ Rd and λ ∈ (0, 1). If the inequality is strict for all x 6= y, then the function is called strictly
convex. The domain (sometimes also called effective domain) of f is defined as

dom(f) := {x ∈ Rd : f(x) < +∞}.

A function g is said to be (strictly) concave if −g is (strictly) convex.925
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The domain of a convex function is easily seen to be convex.926

Proposition 3.2. Let f : Rd → R ∪ {∞} be a convex function. Then dom(f) is a convex set.927

Proof. Left as an exercise.928

The following subfamily of convex functions is nicer to deal with from an algorithmic perspective.929

Definition 3.3. A function f : Rd → R ∪ {∞} is called strongly convex with modulus of strong convexity
c > 0 if

f(λx + (1− λ)y)+ ≤ λf(x) + (1− λ)f(y)− 1

2
cλ(1− λ)‖x− y‖2,

for all x,y ∈ Rd and λ ∈ (0, 1).930

The above definition will become particularly intuitive when we speak of differentiable convex functions931

in Section 3.3. Even so, the following proposition sheds some light on strongly convex functions.932

Proposition 3.4. A function f : Rd → R ∪ {∞} is strongly convex modulus of strong convexity c > 0 if933

and only if the function g(x) := f(x)− 1
2c‖x‖2 is convex.934

Convex functions have a natural convex set associated with them, called the epigraph. Many properties of935

convex functions can be obtained by just analyzing the corresponding epigraph and using all the technology936

built in Section 2. We give the formal definition for general functions below; very informally, it is “the region937

above the graph of a function”.938

Definition 3.5. Let f : Rd → R ∪ {∞} be any function (not necessarily convex). The epigraph of f is
defined as

epi(f) := {(x, t) ∈ Rn × R : f(x) ≤ t}.

Note that epi(f) ⊆ Rd ×R, so it lives in a space whose dimension is one more than the space over which939

the function is defined, just like the graph of the function. Note also that the epigraph is nonempty940

if and only if the function is not identically equal to +∞. Convex functions are precisely those941

functions whose epigraphs are convex.942

Proposition 3.6. Let f : Rd → R ∪ {∞} be any function. f is convex if and only if epi(f) is a convex set.943

Proof. (⇒) Consider any (x1, t1), (x2, t2) ∈ epi(f), and any λ ∈ (0, 1).944

The result is a consequence of the following sequence of implications:945

(x1, t1) ∈ epi(f), (x2, t2) ∈ epi(f), f is convex
⇒ f(x1) ≤ t1, f(x2) ≤ t2, f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)
⇒ f(λx1 + (1− λ)x2) ≤ λt1 + (1− λ)t2
⇒ (λx1 + (1− λ)x2, λt1 + (1− λ)t2) ∈ epi(f)
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(⇐) Consider the any x1,x2 ∈ Rd and λ ∈ (0, 1). The points (x1, f(x1)), (x2, f(x2)) both lie in epi(f).946

By convexity of epi(f), we have that (λx1 + (1 − λ)x2, λf(x1) + (1 − λ)f(x2)) ∈ epi(f). This implies that947

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2), showing that f is convex.948

Just like the class of closed, convex sets are nicer to deal with compared sets that simply convex but not949

closed (mainly because of the separating/supporting hyperplane theorem), it will be convenient to isolate a950

similar class of “nicer” convex functions.951

Definition 3.7. A function is said to be a closed, convex function if its epigraph is a closed, convex set.952

One can associate another family of convex sets with a convex function.953

Definition 3.8. Let f : Rd → R ∪ {∞} be any function. Given α ∈ R, the α-sublevel set of f is the set

fα := {x ∈ Rd : f(x) ≤ α}.

The following can be verified by the reader.954

Proposition 3.9. All sublevel sets of a convex function are convex sets.955

The converse of Proposition 3.9 is not true. Functions whose sublevel sets are all convex are called956

quasi-convex.957

Example 3.10. 1. Indicator function. For any subset X ⊆ Rd, define

IX(x) :=

{
0 if x ∈ X

+∞ if x 6∈ X

Then IX is convex if and only if X is convex.958

2. Linear/Affine function. Let a ∈ Rd and δ ∈ R. Then the function x 7→ 〈a,x〉 + δ is called an affine959

function (if δ = 0, this is a linear function). It is easily verified that affine functions are convex.960

3. Norms and Distances. Let N : Rd → R be a norm (see Definition 1.1). Then N is convex (Verify !!).
Let C be a nonempty convex set. Then the distance function associated with the norm N , defined as

dNC (x) := inf
y∈C

N(y − x)

is a convex function.961

4. Maximum of affine functions/Piecewise linear/Polyhedral function. Let a1, . . . ,am ∈ Rd and δ1, . . . , δm ∈
R. The function

f(x) := max
i=1,...,m

(〈ai,x〉+ δi)
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is a convex function. Let us verify this. Consider any x1,x2 ∈ Rd and λ ∈ (0, 1). Then,

f(λx1 + (1− λ)x2) = maxi=1,...,m(〈ai, λx1 + (1− λ)x2〉+ δi)
= maxi=1,...,m

(
λ(〈ai,x1〉+ δi) + (1− λ)(〈ai,x2〉+ δi)

)
≤ maxi=1,...,m

(
λ(〈ai,x1〉+ δi)

)
+ maxi=1,...,m

(
(1− λ)(〈ai,x2〉+ δi)

)
= λmaxi=1,...,m(〈ai,x1〉+ δi) + (1− λ) maxi=1,...,m(〈ai,x2〉+ δi)
= λf(x1) + (1− λ)f(x2)

The inequality follows from the fact that if `1, . . . , `m and u1, . . . , um be two sets of m real numbers962

for some m ∈ N, then maxi=1,...,m(`i + ui) ≤ maxi=1,...,m `i + maxi=1,...,m ui.963

An important consequence of the definition of convexity for functions is Jensen’s inequality which sees964

its uses in diverse areas of science and engineering.965

Theorem 3.11. [Jensen’s Inequality] Let f : Rd → R ∪ {∞} be any function. Then f is convex if and only
if for any finite set of points x1, . . . ,xn ∈ Rd and λ1, . . . , λn ≥ 0 such that λ1 + . . . , λn = 1, the following
holds:

f(λ1x
1 + . . .+ λnxn) ≤ λ1f(x1) + . . . λnf(xn).

Proof. (⇐) Just use the hypothesis with n = 2.966

(⇒) It suffices to show the inequality when all λi > 0. If any f(xi) is +∞, then the inequality holds967

trivially. So we assume that each f(xi) < +∞. By Proposition 3.6, epi(f) is a convex set. For each968

i = 1, . . . ,m, the point (xi, f(xi) ∈ epi(f) by definition of epi(f). Since epi(f) is convex,
∑m
i=1 λi(x

i, f(xi) ∈969

epi(f), i.e., (λ1x
1 + . . .+λnxn, λ1f(x1)+ . . . λnf(xn)) ∈ epi(f). Therefore, f(λ1x

1 + . . .+λnxn) ≤ λ1f(x1)+970

. . . λnf(xn).971

Recall Theorem 2.3 that showed convexity of a set is preserved under certain operations. We would like972

to develop a similar result for convex functions.973

Theorem 3.12. [Operations that preserve the property of being a (closed) convex function] Let fi : Rd →974

R ∪ {+∞}, i ∈ I be a family of (closed) convex functions where the index set I is potentially infinite. The975

following are all true.976

1. (Nonnegative combinations). If I is a finite set, and αi ≥ 0, i ∈ I be a corresponding set of nonnegative977

reals, then
∑
i∈I αifi is a (closed) convex function.978

2. (Taking supremums). The function defined as g(x) := supi∈I fi(x) is a (closed) convex function (even979

when I is uncountable infinite).980

3. (Pre-Composition with an affine function). Let A ∈ Rm×d and b ∈ Rm and let f : Rm → R be any981

(closed) convex function on Rm. Then g(x) := f(Ax + b) as a function from Rd → R is a (closed)982

convex function.983
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4. (Post-Composition with an increasing convex function). Let h : R → R be a (closed) convex function984

that is also increasing, i.e., h(x) ≥ h(y) when x ≥ y. Let f : Rd → R be a (closed) convex function such985

that for some x ∈ Rd, f(x) ∈ dom(h). We adopt the convention that h(+∞) = +∞. Then h(f(x)) as986

a function from Rd → R is a (closed) convex function.987

Proof. 1. Let F =
∑
i∈I αifi. Consider any x,y ∈ Rd and λ ∈ (0, 1). Then

F (λx + (1− λ)y) =
∑
i∈I αifi(λx + (1− λ)y)

≤ ∑
i∈I αi(λfi(x) + (1− λ)fi(y))

= λ
∑
i∈I αifi(x) + (1− λ)

∑
i∈I αifi(y)

= λF (x) + (1− λ)F (y)

We use the non negativity of αi in the inequality on the second displayed line above. We omit the988

proof of closedness of the function.989

2. The main observation is that epi(g) = ∩i∈I epi(fi) because g(x) ≤ t if and only if fi(x) ≤ t for all990

i ∈ I. Since the intersection of (closed) convex sets is a (closed) convex set (part 1. of Theorem 2.3),991

we have the result.992

3. The main observation is that for any x ∈ Rd and t ∈ R, (x, t) ∈ epi(g) if and only if (Ax+b, t) ∈ epi(f).993

Define the affine map T : Rd×R→ Rm×R as follows T (x, t) = (Ax+ b, t). Then epi(g) = T−1(epi(f).994

Since the pre-image of a (closed) convex set with respect to an affine transformation is (closed) convex995

(part 4. of Theorem 2.3), we obtain that epi(g) is (closed) convex.996

4. Left as an exercise.997

998

We can now see some more interesting examples of convex functions.999

Example 3.13. 1. Let ai ∈ Rd and δi ∈ R for some index set i ∈ I. Then the function

f(x) := sup
i∈I

(〈ai,x〉+ δi)

is closed convex. This is an alternate proof of the convexity of the maximum of finitely many affine1000

functions – part 4. of Example 3.10.1001

2. Consider the vector space V of symmetric n × n matrices. One can view V as R
n(n+1)

2 . Let k ≤ n.
Consider the function fk : V → R which takes a matrix X and maps it to f(X) which is the sum of
the k largest eigenvalues of X. Then fk is a convex function. This is seen by the following argument.
Given any Y ∈ V define the linear function AY on V as follows: AY (X) =

∑
i,j XijYij . Then

fk(X) = sup
Y ∈Ω

AY Y T (X),
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where Ω is the set of n × k matrices with k orthonormal columns in Rn. This shows that fk is the1002

supremum of linear functions, and by Theorem 3.12, it is closed convex.1003

We see in part 1. of Example 3.13 that the supremum of affine functions is convex. We will show below1004

that, in fact, every convex function is the supremum of some family of affine functions. This is analogous1005

to the fact that all closed convex sets are the intersection of some family of halfspaces. We build up to this1006

with an important definition.1007

Definition 3.14. Let f : Rd → R ∪ {∞} be any function. Let x ∈ dom(f). Then a ∈ Rd is said to define1008

an affine support of f at x if f(y) ≥ f(x) + 〈a,y − x〉 for all y ∈ Rd.1009

Theorem 3.15. Let f : Rd → R be any function. Then f is closed convex if and only if there exists an1010

affine support of f at every x ∈ Rd.1011

Proof. (⇒) Consider any x ∈ Rd. By definition of closed convex, epi(f) is a closed convex set. Moreover,1012

(x, f(x)) ∈ bd(epi(f)). By Theorem 2.23, there exists (ā, r) ∈ Rd × R and δ ∈ R such that ā and r are not1013

both 0, and 〈ā,y〉+ rt ≤ δ for all (y, t) ∈ epi(f), and 〈ā,x〉+ rf(x) = δ.1014

We claim that r < 0. Suppose to the contrary that r ≥ 0. First consider the case that ā = 0, then1015

r > 0. (x, t) ∈ epi(f) for all t ≥ f(x). But this contradicts that rt = 〈ā,y〉 + rt ≤ δ for all t ≥ f(x)1016

and rf(x) = 〈ā,x〉 + rf(x) = δ. Next consider the case that ā 6= 0. Consider any y ∈ Rd satisfying1017

〈ā,y〉 > δ. Since f is real valued, there exists (y, t) ∈ epi(f) for some t ≥ 0. Since r ≥ 0, this contradicts1018

that 〈ā,y〉+ rt ≤ δ.1019

Now set a = ā
−r . 〈ā,x〉 + rf(x) = δ and 〈ā,y〉 + rf(y) ≤ δ for all y ∈ Rd together imply that1020

〈ā,y〉 ≤ (−r)f(y) + 〈ā,x〉+ rf(x). Rearranging, we obtain that f(y) ≥ f(x) + 〈a,y − x〉 for all y ∈ Rd.1021

(⇐) By definition of affine support, for every x ∈ Rd, there exists ax ∈ Rd such that f(y) ≥ f(x) +
〈ax,y − x〉 for all y ∈ Rd. This implies that, in fact,

f(y) = sup
x∈Rd

(f(x) + 〈ax,y − x〉),

because setting x = y on the right hand side gives f(y). Thus, f is the supremum of a family of affine1022

functions, which by Example 3.13, shows that f is closed convex.1023

Remark 3.16. 1. Any convex function that is finite valued everywhere is closed convex. This follows1024

from a continuity result we will prove later. We skip the details in these notes. Thus, in the forward1025

direction of Theorem 3.15, one may weaken the hypothesis to just convex, as opposed to closed convex.1026

2. In the reverse direction of Theorem 3.15, one may weaken the hypothesis to having local affine support1027

everywhere. A function f : Rd → R is said to have local affine support at x if there exists ε > 01028

(depending on x) such that f(y) ≥ f(x) + 〈a,y−x〉 for all y ∈ B(x, ε). We will omit the proof of this1029

extension of Theorem 3.15 here. See Chapter on “Convex Functions” in [3].1030

Affine supports for convex functions have been given a special name.1031
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Definition 3.17. Let f : Rd → R ∪ {+∞} be a convex function. For any x ∈ dom(f), an affine support at1032

x is called a subgradient of f at x. The set of all subgradients at x is denoted by ∂f(x) and is called the1033

subdifferential of f at x.1034

Theorem 3.18. Let f : Rd → R ∪ {+∞} be a convex function. For any x ∈ dom(f), the subdifferential1035

∂f(x) at x is a closed, convex set.1036

Proof. Note that
∂f(x) := {a ∈ Rd : 〈y − x,a〉 ≤ f(y)− f(x) ∀y ∈ Rd}.

Since the right hand side of the above equation is the intersection of a family of halfspaces, this shows that1037

∂f(x) is a closed, convex set.1038

3.2 Continuity properties1039

Convex functions enjoy strong continuity properties in the relative interior of their domains3. This fact is1040

very useful in many contexts, especially in optimization, because this is useful in showing that minimizers1041

and maximizers exist when optimizing convex functions that show up in practice, via Weierstrass’ theorem1042

(Theorem 1.11).1043

Proposition 3.19. Let f : Rd → R∪{+∞} be a convex function. Take x? ∈ Rd and suppose that for some
ε > 0 and m,M ∈ R, the inequalities

m ≤ f(x) ≤M
hold for all x in the ball B(x?, 2ε). Then for all x,y ∈ B(x?, ε), it holds that1044

|f(x)− f(y)| ≤
(
M −m

ε

)
‖x− y‖. (3.1)

In particular, f is locally Lipschitz about x?.1045

Proof. Take x,y ∈ B(x?, ε). Define z = y + ε
(

y−x
‖y−x‖

)
. Note that1046

‖z− x?‖ =

∥∥∥∥y + ε

(
y − x

‖y − x‖

)
− x?

∥∥∥∥ ≤ ‖y − x?‖+

∥∥∥∥ε( y − x

‖y − x‖

)∥∥∥∥ ≤ ε+ ε = 2ε.

Thus z ∈ B(x?, 2ε). Also,1047

y =

( ‖y − x‖
ε+ ‖y − x‖

)
z +

(
1− ‖y − x‖

ε+ ‖y − x‖

)
x,

3This section was written by Joseph Paat.
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showing that y is a convex combination of x and z. Therefore we may apply the convexity of f to see1048

f(y) ≤
( ‖y − x‖
ε+ ‖y − x‖

)
f(z) +

(
1− ‖y − x‖

ε+ ‖y − x‖

)
f(x)

= f(x) +

( ‖y − x‖
ε+ ‖y − x‖

)
(f(z)− f(x))

≤ f(x) +

(‖y − x‖
ε

)
(M −m) using the bounds on f in B(x?, 2ε).

Hence f(y)− f(x) ≤
(
‖y−x‖
ε

)
(M −m).1049

Repeating this argument by swapping the roles of x and y, we get f(x) − f(y) ≤
(
‖y−x‖
ε

)
(M − m).1050

Therefore (3.2) holds.1051

Proposition 3.20. Let f : Rd → R ∪ {+∞} be a convex function. Consider any compact, convex subset1052

S ⊆ dom(f) and let x? ∈ relint(S). Then there is a εx? > 0 and values mx? ,Mx? ∈ R so that1053

mx? ≤ f(x) ≤Mx? (3.2)

for all x ∈ B(x?, 2εx?) ∩ S.1054

Proof. Let v1, . . . ,v` be vectors that span the linear space parallel to aff(S) (see Theorem 2.16). By definition1055

of relative interior, since x ∈ aff(S), there exists ε > 0 such that x? + εvj and x? − εvj are both in S for1056

j = 1, . . . , `. Denote the set of points x?± εvj as x1, . . . ,xk ∈ S (k = 2`), and define S′ := conv{x1, . . . ,xk}.1057

Observe that x? ∈ relint(S′) and aff(S′) = aff(S). Set Mx? = max{f(xi) : i = 1, . . . , k}. Using Problem 31058

from “HW for Week VII”, it follows that f(x) ≤Mx? for all x ∈ S′.1059

Now since f is convex, by Theorem 3.15, there is some affine support function L(x) = 〈a, (x−x?)〉+f(x?)

for f at x?. Define mx? = min{L(xi) : i = 1, . . . , k}. Consider any point x =
∑k
i=1 λixi ∈ S′, where

λ1, . . . , λk are convex coefficients, and observe that

L(x) = 〈a,
(

k∑
i=1

λixi

)
− x?〉+ f(x?) =

k∑
i=1

λi (〈a,xi − x?〉+ f(x?)) =

d+1∑
i=1

λiL(xi) ≥ mx? .

Since L is an affine support, it follows that f(x) ≥ L(x) ≥ mx? for all x ∈ S′. Finally, as x? ∈ relint(S′)1060

and aff(S′) = aff(S), there is some ε > 0 so that B(x?, 2ε) ∩ S ⊆ S′.1061

1062

Theorem 3.21. Let f : Rd → R ∪ {+∞} be a convex function. Let D ⊆ relint(dom(f)) be a convex,1063

compact subset. Then there is a constant L = L(D) ≥ 0 so that1064

|f(x)− f(y)| ≤ L‖x− y‖ (3.3)

for all x,y ∈ D. In particular, f is locally Lipschitz continuous over the relative interior of its domain.1065
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Proof. Let S be a compact set such that D ⊆ relint(S) ⊆ relint(dom(f)). From Proposition 3.20, for1066

every x ∈ relint(S), there is a tuple (εx,mx,Mx) so that mx ≤ f(y) ≤ Mx for all y ∈ B(x, 2εx) ∩ S.1067

Proposition 3.19 then implies that there is some Lx ≥ 0 so that |f(y) − f(z)| ≤ Lx‖z − y‖ for all z,y ∈1068

B(x, εx). Note that the collection {B(x, εx) ∩ S : x ∈ D} forms an open cover of S (in the relative topology1069

of aff(S)). Therefore, as S is compact, there exists a finite set {x1, ..., xk} ⊂ S so that S ⊆ ⋃ki=1B(xi, εxi).1070

Set L = max{Lxi : i ∈ [k]}.1071

Now take y, z ∈ S. The line segment [y, z] can be divided into finitely many segments [y, z] = [y1,y2] ∪1072

[y2,y3]∪...∪[yq−1,yq], where y1 = y, yq = z, and each interval [yi,yi+1] is contained in some ball B(xj , εxj )1073

for j ∈ [k]. Without loss of generality, we may assume that q − 1 ≤ k and [yi,yi+1] ⊆ B(xi, εxi) for each1074

i ∈ [q − 1]. It follows that1075

|f(y)− f(z)| =
∣∣∣∣∣f(y1) +

(
q−1∑
i=2

f(yi)

)
−
(
q−1∑
i=2

f(yi)

)
− f(yq)

∣∣∣∣∣
=

∣∣∣∣∣
q−1∑
i=1

f(yi)− f(yi+1)

∣∣∣∣∣
≤
q−1∑
i=1

|f(yi)− f(yi+1)|

≤
q−1∑
i=1

Lxi‖yi − yi+1‖

≤
q−1∑
i=1

L‖yi − yi+1‖

=L‖y1 − yq‖ = L‖y − z‖.

Hence f is Lipschitz over S with constant L.1076

3.3 First-order derivative properties1077

A convex function enjoys very strong differentiability properties. We will first state some useful results1078

without proof. See the Chapter on “Convex Functions” in Gruber [3] for full proofs.1079

Theorem 3.22. Let f : Rd → R ∪ {+∞} be a convex function and let x ∈ int(dom(f)). Then f is1080

differentiable at x if and only if the partial derivative f ′i(x) exists for all i = 1, . . . , d.1081

Theorem 3.23. [Reidemeister’s Theorem] Let f : Rd → R ∪ {+∞} be a convex function. Then f is1082

differentiable almost everywhere in int(dom(f)), i.e., the subset of int(dom(f)) where f is not differentiable1083

has Lebesgue measure 0.1084
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We now prove the central relationships between the gradient ∇f and convexity. We first observe some1085

facts about convex functions on the real line.1086

Proposition 3.24. Let f : R → R be a convex function. Then for any real numbers x < y < z, we must
have

f(y)− f(x)

y − x ≤ f(z)− f(x)

z − x ≤ f(z)− f(y)

z − y .

Moreover, if f is strictly convex, then these inequalities are strict.1087

Proof. Since y ∈ (x, z), there exists α ∈ (0, 1) such that y = αx+ (1− α)z. Now we follow the inequalities:

f(y)−f(x)
y−x = f(αx+(1−α)z)−f(x)

αx+(1−α)z−x
≤ αf(x)+(1−α)f(z)−f(x)

αx+(1−α)z−x
= f(z)−f(x)

z−x

.

Similarly,
f(z)−f(y)

z−y = f(z)−f(αx+(1−α)z)
z−αx−(1−α)z

≥ f(z)−αf(x)−(1−α)f(z)
z−αx−(1−α)z

= f(z)−f(x)
z−x

.

The strict convexity implication is clear from the above.1088

An immediate corollary is the following relationship between the derivative of a function on the real line1089

and convexity.1090

Proposition 3.25. Let f : R → R be a differentiable function. Then f is convex if and only if f ′ is an1091

increasing function, i.e., f ′(x) ≤ f ′(y) for all x ≤ y ∈ R. Moreover, f is strictly convex if and only if1092

f ′ is strictly increasing. f is strongly convex with strong convexity modulus c > 0 if and only if f ′(x) ≥1093

f ′(y) + c(x− y) for all x ≥ y ∈ R.1094

Proof. (⇒) Recall that f ′(x) = limt→0+

f(x+t)−f(x)
t . But for every 0 < t < y − x, we have f(x+t)−f(x)

t ≤1095

f(y)−f(x)
y−x by Proposition 3.24. Thus, f ′(x) ≤ f(y)−f(x)

y−x . By a similar argument, we obtain f ′(y) ≥ f(y)−f(x)
y−x .1096

This gives the relation.1097

(⇐) Consider any x, z ∈ R and α ∈ (0, 1). Let y = αx + (1 − α)z. By the mean value theorem, there

exists t1 ∈ [x, y] such that f(y)−f(x)
y−x = f ′(t1) and t2 ∈ [y, z] such that f(z)−f(y)

z−y = f ′(t2). Since t2 ≥ t1 and

we assume f ′ is increasing, then f ′(t2) ≥ f ′(t1). This implies that

f(z)− f(y)

z − y ≥ f(y)− f(x)

y − x .

Substituting y = αx+ (1− α)z and rearranging, we obtain that f(αx+ (1− α)z) ≤ αf(x) + (1− α)f(z).1098

The argument for strict convexity follows by replacing all inequalities by strict inequalities.1099
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We can now prove the main result of this subsection. A key idea behind the results below is that one can1100

reduce testing convexity of a function on Rd to testing convexity of any one-dimensional “slice” of it. More1101

precisely,1102

Proposition 3.26. Let f : Rd → R be a function. Then f is convex if and only if for every x, r ∈ Rd, the1103

function φ : R→ R defined by φ(t) = f(x + tr) is convex.1104

Proof. Left as an exercise.1105

Theorem 3.27. Let f : Rd → R be differentiable everywhere. Then the following are all equivalent.1106

1. f is convex.1107

2. f(y) ≥ f(x) + 〈∇f(x),y − x〉 for all x,y ∈ Rd.1108

3. 〈∇f(y)−∇f(x),y − x〉 ≥ 0 for all x,y ∈ Rd.1109

A characterization of strict convexity is obtained if all the above inequalities are considered strict for all1110

x 6= y ∈ Rd. A characterization of strong convexity with modulus c > 0 is obtained if 2. is replaced with1111

f(y) ≥ f(x)+〈∇f(x),y−x〉+ 1
2c‖y−x‖2 for all x,y ∈ Rd, and 3. is replaced with 〈∇f(y)−∇f(x),y−x〉 ≥1112

c‖y − x‖2 for all x,y ∈ Rd.1113

Proof. 1. ⇒ 2. Consider any x,y ∈ Rd. For every α > 0, convexity of f implies that f((1 − α)x + αy) ≤
(1− α)f(x) + αf(y). Rearranging, we obtain

f((1−α)x+αy)−f(x)
α ≤ f(y)− f(x)

⇒ f(x+α(y−x))−f(x)
α ≤ f(y)− f(x)

Letting α→ 0 on the left hand side, we obtain the directional derivative 〈∇f(x),y−x〉 and 2. is established.1114

2.⇒ 3. By switching the roles of x,y ∈ Rd, we obtain the following

f(y) ≥ f(x) + 〈∇f(x),y − x〉
f(x) ≥ f(y) + 〈∇f(y),x− y〉 .

Adding these inequalities together we obtain 3.1115

3. ⇒ 1. Consider any x̄, ȳ ∈ Rd and define the function φ(t) := f(x̄ + t(ȳ − x̄)). Observe that φ′(t) =
〈∇f(x̄ + t(ȳ − x̄)), ȳ − x̄〉 for any t ∈ R. For t2 > t1, we have that

φ′(t2)− φ′(t1) = 〈∇f(x̄ + t2(ȳ − x̄)), ȳ − x̄〉 − 〈∇f(x̄ + t1(ȳ − x̄)), ȳ − x̄〉
= 〈∇f(x̄ + t2(ȳ − x̄))−∇f(x̄ + t1(ȳ − x̄)), ȳ − x̄〉
= 1

t2−t1 〈∇f(x̄ + t2(ȳ − x̄))−∇f(x̄ + t1(ȳ − x̄)), (t2 − t1)(ȳ − x̄)〉
= 1

t2−t1 〈∇f(x̄ + t2(ȳ − x̄))−∇f(x̄ + t1(ȳ − x̄)), (t2(ȳ − x̄)− x̄)− (t1(ȳ − x̄)− x̄)〉
≥ 0

where the last inequality follows from the fact that 〈∇f(y)−∇f(x),y−x〉 ≥ 0 for all x,y ∈ Rd, and t2 > t1.1116

Therefore, by Proposition 3.25, we obtain that φ(t) is a convex function in t. By Proposition 3.26, f is1117

convex.1118
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3.4 Second-order derivative properties1119

A simple consequence of Proposition 3.25 for twice differentiable functions on the real line is the following.1120

Corollary 3.28. Let f : R→ R be a twice differentiable function. Then f is convex if and only if f ′′(x) ≥ 01121

for all x ∈ R. If f ′′(x) > 0, then f is strictly convex.1122

Remark 3.29. From Proposition 3.25, we know strict convexity of f is equivalent to the condition that f ′ is1123

strictly increasing. However, this is not equivalent to f ′′(x) > 0, the implication only goes in one direction.1124

This is why we lose the other direction when discussing strict convexity in Corollary 3.28. As a concrete1125

example, consider f(x) = x4 which is strictly convex, but the second derivative is 0 at x = 0.1126

This enables one to characterize convexity of f : Rd → R in terms of its Hessian, which will be denoted1127

by ∇2f .1128

Theorem 3.30. Let f : Rd → R be a twice differentiable function. Then the following are all true.1129

1. f is convex if and only if ∇2f(x) is positive semidefinite (PSD) for all x ∈ Rd.1130

2. If ∇2f(x) is positive definite (PD) for all x ∈ Rd, then f is strictly convex.1131

3. f is strongly convex with modulus c > 0 if and only if ∇2f(x)− cI is positive semidefinite (PSD) for1132

all x ∈ Rd.1133

Proof. 1. (⇒) Let x ∈ Rd and we would like to show that ∇2f(x) is positive semidefinite. Consider any1134

r ∈ Rd. Define the function φ(t) = f(x + tr). By Proposition 3.26, φ is convex. By Corollary 3.28,1135

0 ≤ φ′′(0) = 〈∇2f(x)r, r〉. Since the choice of r was arbitrary, this shows that ∇2f(x) is positive1136

semidefinite.1137

(⇐) Assume ∇2f(x) is positive semidefinite fo all x ∈ Rd, and consider x̄, r ∈ Rd. Define the function1138

φ(t) = f(x̄ + tr). Now φ′′(t) = 〈∇2f(x̄ + tr)r, r〉 ≥ 0, since ∇2f(x̄ + tr) is positive semidefinite. By1139

Corollary 3.28, φ is convex. By Proposition 3.26, f is convex.1140

2. This follows from the same construction as in 1. above, and the sufficient condition that if the second1141

derivative of one-dimensional function is strictly positive, then the function is strictly convex.1142

3. We omit the proof of the characterization of strong convexity.1143

1144

3.5 Sublinear functions, support functions and gauges1145

We will now introduce a more structured subfamily of convex functions which is easier to deal with analyti-1146

cally, and yet has very important uses in diverse areas.1147

Definition 3.31. A function f : Rd → R∪{+∞} is called sublinear if it satisfies the following two properties:1148
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(i) f is positively homogeneous, i.e., f(λr) = λf(r) for all r ∈ Rd and λ > 0.1149

(ii) f is subadditive, i.e., f(x + y) ≤ f(x) + f(y) for all x,y ∈ Rd.1150

Here is the connection with convexity.1151

Proposition 3.32. Let f : Rd → R ∪ {+∞}. Then the following are equivalent:1152

1. f is sublinear.1153

2. f is convex and positively homogeneous.1154

3. f(λ1x
1 + λ2x

2) ≤ λ1f(x1) + λ2f(x2) for all x1,x2 ∈ Rd and λ1, λ2 > 0.1155

Proof. Left as an exercise.1156

A characterization via epigraphs is also possible.1157

Proposition 3.33. Let f : Rd → R ∪ {+∞} such that f(0) = 0. Then f is sublinear if and only if epi(f)1158

is a convex cone in Rd × R.1159

Proof. (⇒) From Proposition 3.32, we know that f is convex and positively homogeneous. From Propo-1160

sition 3.6, this implies that epi(f) is convex. So we only need to verify that if (x, t) ∈ epi(f) then1161

λ(x, t) = (λx, λt) ∈ epi(f) for all λ ≥ 0. If λ = 0, then the result follows from the assumption that1162

f(0) = 0. Now consider λ > 0. Since (x, t) ∈ epi(f), we have f(x) ≤ t and by positive homogeneity of f ,1163

f(λx) = λf(x) ≤ λt, and so (λx, λt) ∈ epi(f).1164

(⇐) From Proposition 3.6 and the assumption that epi(f) is a convex cone, we get that f is convex. We1165

now verify that f is positively homogeneous; by Proposition 3.32, we will be done. We first verify that for1166

all λ > 0 and x ∈ Rd, f(λx) ≤ λf(x). Since epi(f) is a convex cone and (x, f(x)) ∈ epi(f), we have that1167

λ(x, f(x)) = (λx, λf(x)) ∈ epi(f). This implies that f(λx) ≤ λf(x).1168

Now, for any particular λ̄ > 0 and x̄ ∈ Rd, we have that f(λ̄x̄) ≤ λ̄f(x̄). But using the above observation1169

with λ = 1
λ̄

and x = λ̄x, we obtain that f( 1
λ̄
λ̄x̄) ≤ 1

λ̄
f(λ̄x̄), i.e., λ̄f(x̄) ≤ f(λ̄x̄). Hence, we must have1170

f(λ̄x̄) = λ̄f(x̄).1171

Gauges. One easily observes that any norm N : Rd → R is a sublinear function – recall Definition 1.1.1172

In fact, a norm has the additional “symmetry” property that N(x) = N(−x). Since a sublinear function is1173

convex (Proposition 3.32), and sublevel sets of convex sets are convex, we immediately know that the unit1174

norm balls BN (0, 1) = {x ∈ Rd : N(x) ≤ 1} are convex sets. Because of the “symmetry property” of norms,1175

these unit norm balls are also “symmetric” about the origin. This merits a definition.1176

Definition 3.34. A convex set C ⊆ Rd is said to be centrally symmetric about the origin, if x ∈ C implies1177

that −x ∈ C. Sometimes we will abbreviate this to say C is centrally symmetric.1178
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We now summarize the above discussion in the following observation.1179

Proposition 3.35. Let N : Rd → R be a norm. Then the unit norm ball BN (0, 1) = {x ∈ Rd : N(x) ≤ 1}1180

is a centrally symmetric, closed convex set.1181

One can actually prove a converse to the above statement, which will establish a nice one-to-one corre-1182

spondence between norms and centrally symmetric convex sets. We first generalize the notion of a norm to1183

a family of sublinear functions called “gauge functions”.1184

Definition 3.36. Let C ⊆ Rd be a closed, convex set such that 0 ∈ C. Define the following function
γC : Rd → R ∪ {+∞} as

γC(r) = inf{λ > 0 : r ∈ λC}.
γC is called the gauge or the Minkowski functional of C.1185

Exercise 7. Show that γC is finite valued everywhere if and only if 0 ∈ int(C).1186

The following is a useful observation for the analysis of gauge functions.1187

Lemma 3.37. Let C ⊆ Rd be a closed convex set such that 0 ∈ C, and let r ∈ Rd be any vector. Then the1188

set {λ > 0 : r ∈ λC} is either empty or a convex interval of the real line of the form (a,+∞) or [a,+∞).1189

Proof. Define I := {λ > 0 : r ∈ λC} and suppose it is nonempty. It suffices to show that if λ̄ ∈ I then1190

for all λ ≥ λ̄, λ ∈ I. This follows from the fact that λ̄ ∈ I implies that 1
λ̄
r ∈ C. For any λ ≥ λ̄, we have1191

1
λr = λ̄

λ ( 1
λ̄
r) + (λ−λ̄λ )0 which is in C because C is convex and 0 ∈ C.1192

A useful intuition to keep in mind is that for any r the gauge function value γC(r) gives you a factor to1193

scale r with so that you end up on the boundary of C. More precisely,1194

Proposition 3.38. Let C ⊆ Rd be a closed, convex set such that 0 ∈ C. Suppose r ∈ Rd such that1195

0 < γC(r) <∞. Then 1
γC(r)r ∈ relbd(C).1196

Proof. From Lemma 3.37, we have that for all λ > γC(r), we have that r ∈ λC, i.e., 1
λr ∈ C. Taking the1197

limit λ ↓ γC(r) and using the fact that C is closed, we obtain that 1
γC(r)r ∈ C. If 1

γC(r)r ∈ relint(C), then we1198

can scale 1
γC(r)r by α > 1 and obtain that α

γC(r)r ∈ C, which would imply that r ∈ γC(r)
α C}, contradicting1199

the fact that γC(r) = inf{λ > 0 : r ∈ λC}, since γC(r)
α < γC(r).1200

The following theorem relates geometric properties of C with analytical properties of the gauge function.1201

These relations are extremely handy to keep in mind.1202

Theorem 3.39. Let C ⊆ Rd be a closed, convex set such that 0 ∈ C. Then the following are all true.1203

1. γC is a nonnegative, sublinear function.1204
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2. C = {x ∈ Rd : γC(x) ≤ 1}.1205

3. rec(C) = {r ∈ Rd : γC(r) = 0}.1206

4. If 0 ∈ relint(C), then relint(C) = {x ∈ Rd : γC(x) < 1}.1207

Proof. 1. Although 1. can be proved directly from the definition of the gauge, we postpone its proof until1208

we speak of support functions below.1209

2. We now first show that C ⊆ {x ∈ Rd : γC(x) ≤ 1}. This is because x ∈ C implies that 1 ∈ {λ > 0 :1210

x ∈ λC} and therefore, inf{λ > 0 : x ∈ λC} ≤ 1.1211

Now, we verify that {x ∈ Rd : γC(x) ≤ 1} ⊆ C. γC(x) ≤ 1 implies that inf{λ > 0 : x ∈ λC} ≤ 1 and1212

since {λ > 0 : x ∈ λC} is convex by Lemma 3.37, this means that either 1 ∈ {λ > 0 : r ∈ λC}, and1213

thus x ∈ C or 1 = inf{λ > 0 : x ∈ λC} = γC(x). By Proposition 3.38, we have that 1 · x ∈ C.1214

3. Since {λ > 0 : r ∈ λC} is convex, as proved in part 2., we observe that γC(r) = 0 if and only if1215

1
λr ∈ C} for all λ > 0. Since 0 ∈ C, this is equivalent to saying that tr ∈ C for all t ≥ 0; more1216

explicitly, 0+ tr ∈ C for all t ≥ 0. This is equivalent to saying that r satisfies Definition 2.43 of rec(C).1217

4. Consider any x ∈ relint(C). By definition of relative interior, there exists λ > 1 such that λx ∈ C.1218

By part 2. above, γC(λx) ≤ 1 and by part 1. above, γC is positively homogeneous, and thus,1219

γC(x) ≤ 1
λ < 1.1220

Now suppose x ∈ Rd such that γC(x) < 1. If γC(x) = 0, then x ∈ rec(C) by part 3. above. Since1221

0 ∈ relint(C), we also have x = 0 + x ∈ relint(C). Now suppose, 0 < γC(x) < 1. By part 2. above,1222

x ∈ C. Suppose to the contrary that x 6∈ relint(C). By Theorem 2.40, x is contained in a proper face1223

F of C. Since 0 ∈ relint(C), 0 is not contained in F . Also, γC( x
γC(x) ) = 1 by positive homogeneity1224

of γC , from part 1. above. Therefore, x
γC(x) ∈ C. However, x = (1 − γC(x))0 + γC(x)( x

γC(x) ). Since1225

γC(x) < 1 and 0 6∈ F , this would contradict the fact that F is a face.1226

1227

We derive some immediate consequences.1228

Corollary 3.40. Let C ⊆ Rd be a closed, convex set containing the origin. Then C is compact if and only1229

if γ(r) > 0 for all r ∈ Rd \ {0}.1230

Corollary 3.41. [Uniqueness of the gauge] Let C be a compact convex set containing the origin in its1231

interior, i.e., 0 ∈ int(C). Let f : Rd → R be any sublinear function. Then C = {x ∈ Rd : f(x) ≤ 1} if and1232

only if f = γC .1233

Proof. The sufficiency follows from Theorem 3.39, part 2. For the necessity, suppose to the contrary that1234

f(x) 6= γC(x) for some x ∈ Rd. We first observe that x 6= 0 because f(0) = 0 = γC(0) by positive1235

homogeneity and the fact that f is continuous (Theorem 3.21) because f is convex (Proposition 3.32).1236
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First suppose f(x) > γC(x). Since C is compact, we know that γC(x) > 0. Consider that point 1
γC(x)x.1237

By Proposition 3.38, x ∈ relbd(C). However, since f is positively homogeneous, f( 1
γC(x)x) = 1

γC(x)f(x) > 11238

because f(x) > γC(x). This contradicts that C = {x ∈ Rd : f(x) ≤ 1}.1239

Next suppose f(x) < γC(x). If f(x) ≤ 0, then by positive homogeneity, f(λx) ≤ 0 for all λ ≥ 0. Thus,1240

λx ∈ C for all λ ≥ 0 by the assumption that C = {x ∈ Rd : f(x) ≤ 1}. This means that x ∈ rec(C) which1241

contradicts the fact that C is compact (see Theorem 2.47). Thus, we may assume that f(x) > 0.1242

Now let y = 1
f(x)x. By positive homogeneity of γC , we obtain that γC(y) = γC( 1

f(x)x) = γC(x)
f(x) > 1.1243

Therefore, y 6∈ C by Theorem 3.39, part 2. However, f(y) = 1, which contradicts the assumption that1244

C = {x ∈ Rd : f(x) ≤ 1}.1245

The proof of Corollary 3.41 also implies the following.1246

Corollary 3.42. [Uniqueness of the gauge-II] Let C be a closed, convex set (not necessarily compact)1247

containing the origin in its interior, i.e., 0 ∈ int(C). Let f : Rd → R be any nonnegative, sublinear function.1248

Then C = {x ∈ Rd : f(x) ≤ 1} if and only if f = γC .1249

Consequently, for every nonnegative, sublinear function f , there exists a closed, convex set C such that1250

f = γC .1251

We also make the following observation on when the gauge function can take +∞ as a value.1252

Lemma 3.43. Let C be a closed, convex set with 0 ∈ C. Then the gauge γC is finite valued everywhere1253

(i.e., γC(x) <∞ for all x ∈ Rd) if and only if 0 ∈ int(C).1254

Proof. (=⇒) Suppose 0 is not in the interior, i.e., 0 is on the boundary of C. By the Supporting Hyperplane1255

Theorem 2.23, there exist a ∈ Rd \ {0} and δ ∈ R such that C ⊆ H−(a, δ) and 〈a,0〉 = δ. Thus, δ = 0.1256

Now consider any r ∈ Rd such that 〈a, r〉 > 0. However, since C ⊆ H−(a, 0), it follows that λC ⊆ H−(a, 0)1257

for all λ > 0. Therefore, the set {λ > 0 : r ∈ λC} is empty, and we conclude that γC(r) = ∞. In fact, this1258

shows that γC takes value ∞ on the entire “open” halfspace {r ∈ Rd : 〈a, r〉 > 0}.1259

(⇐=) Assume 0 ∈ int(C) and consider any x ∈ Rd. Since 0 ∈ int(C), there exists ε > 0 such that εx ∈ C.1260

Thus, 1
ε is in the set {λ > 0 : x ∈ λC}, and so the infimum over this set is finite valued. Thus, γC(x) <∞1261

for all x ∈ Rd.1262

We can now finally settle the correspondence between norms and centrally symmetric, compact convex1263

sets.1264

Theorem 3.44. Let N : Rd → R be a norm. Then BN (0, 1) = {x ∈ Rd : N(x) ≤ 1} is a centrally1265

symmetric, compact convex set with 0 in its interior. Moreover, γBN (0,1) = N .1266

Conversely, let B be a centrally symmetric, compact convex set containing 0 in its interior. Then γB is1267

a norm on Rd and B = BγB (0, 1).1268
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Proof. For the first part, since N is sublinear, it is convex (by Proposition 3.32). By definition, BN (0, 1) =1269

{x ∈ Rd : N(x) ≤ 1} is a sublevel set for N , and is thus a convex set. It is closed, since N is continuous by1270

Theorem 3.21. Since N(x) = N(−x), this also shows that BN (0, 1) is centrally symmetric. We now show1271

that rec(BN (0, 1)) = {0}; this will imply that it is compact by Theorem 2.47. Consider any nonzero vector1272

r, and let N(r) = M > 0. Then, 2
M r = 0 + 2

M r, but N( 2
M r) = 2. Thus, 2

M r 6∈ BN (0, 1), and so r cannot be1273

a recession direction for BN (0, 1).1274

We verify that 0 ∈ int(BN (0, 1)). If not, then by the Supporting Hyperplane Theorem 2.23, there exists1275

a ∈ Rd \ {0} and δ ∈ R such that BN (0, 1) ⊆ H−(a, δ) and 〈a,0〉 = δ. Thus, δ = 0. Now, since a 6= 0,1276

N(a) > 0. Thus, N( a
N(a) ) = 1 and by definition, a

N(a) ∈ BN (0, 1). However, 〈a, a
N(a) 〉 = ‖a‖2

N(a) > 0 which1277

contradicts the fact that BN (0, 1) ⊆ H−(a, 0). Therefore, from Corollary 3.41, we obtain that N = γBN (0,1).1278

For the second part, we know that γB is sublinear, and since B is compact, γB(r) > 0 for all r 6= 0 by1279

Corollary 3.40. Since 0 ∈ int(B), Lemma 3.43 implies that γC is finite valued everywhere. To confirm that1280

γB is a norm, all that remains to be checked is that γB(x) = γB(−x) for all x 6= 0. Suppose to the contrary1281

that γB(x) > γB(−x) (note that this is without loss of generality). This implies that γB( 1
γB(−x))x) > 1.1282

Therefore, 1
γB(−x))x 6∈ B by Theorem 3.39, part 2. However, γB(− 1

γB(−x))x) = 1
γB(−x)γB(−x) = 1 showing1283

that − 1
γB(−x))x ∈ B by Theorem 3.39, part 2. This contradicts the fact that B is centrally symmetric. Thus,1284

γB is a norm on Rd. Moreover, by Theorem 3.39, part 2., B = {x ∈ Rd : γB(x) ≤ 1} = BγB (0, 1).1285

Let us build towards a more computational approach to the gauge. First, lets give an explicit formula1286

for the gauge of a halfspace containing the origin.1287

Example 3.45. Let H := H−(a, δ) be a halfspace defined by some a ∈ Rd and δ ∈ R such that 0 ∈ H−(a, δ).
We assume that we have normalized δ to be 0 or 1. If δ = 0, then

γH(r) =

{
0 if 〈a, r〉 ≤ 0

+∞ if 〈a, r〉 > 0

If δ = 1, then
γH(r) = max{0, 〈a, r〉}.

The above calculation, along with the next theorem, gives powerful computational tools for gauge func-1288

tions.1289

Theorem 3.46. Let Ci, i ∈ I be a (not necessarily finite) family of closed, convex sets, and let C = ∩i∈ICi.
Then

γC = sup
i∈I

γCi .

Proof. Consider any r ∈ Rd. Let us define Ai = {λ > 0 : r ∈ λCi} for each i ∈ I, and define A = {λ > 0 :1290

r ∈ λC}. Observe that A = ∩Ai. If any Ai is empty, then γCi =∞, and A is empty and therefore γC =∞,1291

and the equality holds. Now suppose all Ai’s are nonempty, and so by Lemma 3.37, each Ai is of the form1292
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(ai,∞) or [ai,∞). If A = ∅, then it must mean that ai → ∞. Since γCi(r) = inf Ai = ai, this shows that1293

supi∈I γCi(r) = ∞. Moreover, A = ∅ implies that γC(r) = inf A = ∞. Finally, consider the case that A is1294

nonempty. Then since A = ∩Ai, γC(r) = a = supi∈I ai = supi∈I γCi(r).1295

This shows that gauge functions for polyhedra can be computed very easily.1296

Corollary 3.47. Let P be a polyhedron containing the origin in its interior. Thus, there exist a1, . . . ,am ∈
Rd such that

P = {x ∈ Rd : 〈ai,x〉 ≤ 1 i = 1, . . . ,m}.
Then

γP (r) = max{0, 〈a1, r〉, . . . , 〈am, r〉}.

Proof. Use the formula from 3.45 and Theorem 3.46.1297

Support functions. While gauges are good in the sense that they are a nice generalization of norms from1298

centrally symmetric convex bodies to asymmetric convex bodies, there is a drawback. Gauges are a strict1299

subset of sublinear functions because they are always nonnegative, while there are many sublinear functions1300

that take negative values. We would like to establish a one-to-one correspondence between sublinear functions1301

and all closed, convex sets. Note that the correspondence via the epigraph only establishes a correspondence1302

with closed, convex cones, and that too not all closed, convex cones are covered. The right definition, it1303

turns out, is inspired by optimization of linear functions over closed, convex sets.1304

Definition 3.48. Let S ⊆ Rd be any set. The support function for S is a function on Rd defined as

σS(r) = sup
x∈S
〈r,x〉.

The following is easy to verify, and aspects of it were already explored in the midterm and HWs.1305

Proposition 3.49. Let S ⊆ Rd. Then

σS = σcl(S) = σconv(S) = σcl(conv(S)).

Proposition 3.50. Let S ⊆ Rd. Then σS is a closed, sublinear function, i.e., its epigraph is a closed, convex1306

cone.1307

Proof. We first check that σS is sublinear. We check positive homogeneity. For any r ∈ Rd and λ > 0,

σS(λr) = sup
x∈S
〈λr,x〉 = sup

x∈S
λ〈r,x〉 = λ sup

x∈S
〈r,x〉 = λσS(r).
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We check subadditivity. Let r1, r2 ∈ Rd. Then,

σS(r1 + r2) = supx∈S〈r1 + r2,x〉
= supx∈S(〈r1,x〉+ 〈r2,x〉)
≤ supx∈S〈r1,x〉+ supx∈S〈r2,x〉
= σS(r1) + σS(r2).

Since σS is the supremum of linear functions 〈x, r〉, x ∈ S, epi(f) is the intersection of closed halfspaces,1308

which shows that it is closed. The fact that it is a convex cone follows from Proposition 3.33.1309

We now establish a fundamental correspondence between gauges and support functions via polarity.1310

Theorem 3.51. Let C be a closed convex set containing the origin. Then

γC = σC◦ .

Proof. Recall that C = (C◦)◦ by Proposition 2.30 part 2. Unwrapping the definitions, this says that

C = {x ∈ Rd : 〈a,x〉 ≤ 1 ∀a ∈ C◦} = ∩a∈C◦H−(a, 1).

By Theorem 3.46 and Example 3.45, we obtain that

γC(r) = sup
a∈C◦

γH−(a,1)(r) = sup
a∈C◦

max{0, 〈a, r〉}.

Since 0 ∈ C◦, the last term above can be written as supa∈C◦〈a, r〉 = σC◦(r).1311

Example 3.52. Consider the polyhedron

P = {x ∈ R2 : −x1 − x2 ≤ 1,
1

2
x1 − x2 ≤ 1, −x1 +

1

2
x2 ≤ 1}.

From Corollary 3.47, we obtain that

γP (r) = max{0,−r1 − r2,
1

2
r1 − r2,−r1 +

1

2
r2},

and by Theorem 3.39 part 2., we obtain that P = {x ∈ R2 : γP (x) ≤ 1}. Now consider the function

f(r) = max{−r1 − r2,
1

2
r1 − r2,−r1 +

1

2
r2}.

It turns out that P = {x ∈ R2 : f(x) ≤ 1} because

x ∈ P ⇔ −x1 − x2 ≤ 1, 1
2x1 − x2 ≤ 1, −x1 + 1

2x2 ≤ 1
⇔ max{−x1 − x2,

1
2x1 − x2,−x1 + 1

2x2} ≤ 1
⇔ f(x) ≤ 1.
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Notice that f((1, 1)) = − 1
2 6= 0 = γP ((1, 1)). Also, f is sublinear because f is the support function of the1312

set S = {(−1,−1), ( 1
2 ,−1), (−1, 1

2 )}. This shows that Corollary 3.41 really breaks down if the assumption1313

of compactness is removed. Even so, given a closed, convex set C, any sublinear function that has a set C1314

as its 1-sublevel set must match the gauge on Rd \ int(rec(C)) (see Problem 7 from “HW for Week IX”). If1315

you are interested in learning more about representing closed, convex sets as the sublevel sets of sublinear1316

functions, please see [1] on exciting new results.1317

1318

Generalized Cauchy-Schwarz/Holder’s inequality. Using our relationship between norms and
gauges and support functions, we can write an inequality which vastly generalizes Holder’s inequality
(and consequently, Cauchy-Schwarz’ inequality) – see Proposition 2.32.

Theorem 3.53. Let C ⊆ Rd be a compact, convex set containing the origin in its interior. Then

〈x,y〉 ≤ γC(x)σC(y) ∀x,y ∈ Rd.

Proof. Consider any x,y ∈ Rd. Since C is compact, γC(x) > 0 by Corollary 3.40, and σC(y) < ∞. By
Proposition 3.38, x

γC(x) ∈ C, and therefore,

〈 x

γC(x)
,y〉 ≤ sup

z∈C
〈z,y〉 = σC(y).

This immediately implies 〈x,y〉 ≤ γC(x)σC(y).

Corollary 3.54. Let C ⊆ Rd be a compact, convex set containing the origin in its interior. Then

〈x,y〉 ≤ γC(x)γC◦(y) ∀x,y ∈ Rd.

Proof. Follows from Theorems 3.53 and 3.51.

The above corollary generalizes Holder’s inequality by recalling that when 1
p + 1

q = 1, then the `p and `q

unit balls are polars of each other. Note that Theorem 3.53 and Corollary 3.54 have no assumption of
centrally symmetric sets, so they strictly generalize the norm inequalities of Holder and Cauchy-Schwarz.

1319

One-to-one correspondence between closed, convex sets and closed, sublinear functions. Propo-1320

sition 3.50 shows that support functions are closed, sublinear functions. Proposition 3.49 shows that two1321

different sets, e.g., S and conv(S), may give rise to the same sublinear function σS = σconv(S) via the support1322

function construction. In other words, if we consider the mapping S → σS as a mapping from the family of1323

subsets of Rd to the family of closed, sublinear functions, this mapping is not injective. But if we restrict to1324

closed, convex sets, it can shown that this mapping is injective.1325
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Exercise 8. Let C1, C2 be closed, convex sets. Then σC1 = σC2 if and only if C1 = C2.1326

A natural question now is whether the mapping C → σC from the family of closed, convex sets to the1327

family of closed, sublinear functions is onto. The answer is yes! Thus, all closed, sublinear functions1328

are support functions and vice versa.1329

Theorem 3.55. Let f : Rd → R ∪ {+∞} be a sublinear function that is also closed. Then the set1330

Cf := {x ∈ Rd : 〈r,x〉 ≤ f(r) ∀r ∈ Rd} = ∩r∈RdH−(r, f(r)) (3.4)

is a closed, convex set. Moreover, σCf = f .1331

Conversely, if C is a closed, convex set, then CσC = C.1332

Proof. We will prove the assertion when f is finite valued everywhere; the proof for general f is more tedious1333

and does not provide any additional insight, in our opinion, and will be skipped here.1334

Since Cf is defined as the intersection of a family of halfspace (indexed by Rd), Cf is a closed, convex1335

set. We now establish that σCf = f . For any r ∈ Rd, since Cf ⊆ H−(r, f(r)), we must have that1336

σCf (r) = 〈r,x ∈ C〉 ≤ f(r). To show that σCf (r) ≥ f(r), it suffices to exhibit y ∈ Cf such that 〈r,y〉 = f(r).1337

Consider epi(f), which by Proposition 3.33, is a closed convex cone (since f is assumed to be closed). By1338

Theorem 2.23, there exists a supporting hyperplane for epi(f) at (r, f(r)). Let this hyperplane by defined by1339

(y, η) ∈ Rd × R and α ∈ R such that epi(f) ⊆ H−((y, η), α). Using Problems 8 and 9 from “HW for Week1340

IX”, one can assume that α = 0 and η < 0. After normalizing, this means that epi(f) ⊆ H−((y/−η,−1), 0).1341

This implies that for every r′ ∈ Rd, (r′, f(r′)) ∈ H−((y/− η,−1), 0), which implies that 〈r′, y
−η 〉 ≤ f(r′) for1342

all r′ ∈ Rd. So, y
−η ∈ Cf . Moreover, since H((y/− η,−1), 0) is a supporting hyperplane at (r, f(r), we must1343

have 〈r, y
−η 〉 − f(r) = 0. So, we are done.1344

We now show that CσC = C for any closed, convex set C. Consider any x ∈ C. Then 〈r,x〉 ≤1345

supy∈C〈r,y〉 = σC(r). Therefore, x ∈ H−(r, σ(r)) for all r ∈ Rd. This shows that x ∈ CσC , and therefore,1346

C ⊆ CσC . To show the reverse inclusion, consider any y 6∈ C. Since C is a closed, convex set, there1347

exists a separating hyperplane H(a, δ) such that C ⊆ H−(a, δ) and 〈a,y〉 > δ. C ⊆ H−(a, δ) implies that1348

σC(a) = supx∈C〈a,x〉 ≤ δ. Since CσC has 〈a,x〉 ≤ σC(a) as a defining halfspace, and 〈a,y〉 > δ ≥ σC(a),1349

we observe that y 6∈ CσC .1350

One can associate a nice picture with the above construction of Cf associated with the sublinear function1351

f , which corresponds to the following proposition.1352

Proposition 3.56. Let f : Rd → R be a sublinear function, and let Cf be defined as in Theorem 3.55.1353

Then y ∈ Cf if and only if (y,−1) ∈ epi(f)◦. In other words, Cf = {y ∈ Rd : (y,−1) ∈ epi(f)◦}.1354
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Figure 1: Illustration of Propositions 3.56 and 3.57

Proof. We simply observe the following equivalences.

y ∈ Cf ⇔ 〈r,y〉 ≤ f(r) ∀r ∈ Rd
⇔ 〈r,y〉 ≤ t ∀r ∈ Rd, t ∈ R such that f(r) ≤ t
⇔ 〈r,y〉 − t ≤ 0 ∀r ∈ Rd, t ∈ R such that f(r) ≤ t
⇔ 〈(r, t), (y,−1)〉 ≤ 0 ∀r ∈ Rd, t ∈ R such that f(r) ≤ t
⇔ 〈(y,−1), (r, t)〉 ≤ 0 ∀(r, t) ∈ epi(f)
⇔ (y,−1) ∈ epi(f)◦

1355

When f is a nonnegative sublinear function, even more can be said.1356

Proposition 3.57. Let f : Rd → R be a sublinear function that nonnegative everywhere, and let Cf1357

be defined as in Theorem 3.55. Then f = γ(Cf )◦ , i.e., f is the gauge function for (Cf )◦. Consequently,1358

(Cf )◦ = {y ∈ Rd : (y, 1) ∈ epi(f)} = {y ∈ Rd : f(y) ≤ 1}.1359

Proof. Since f ≥ 0, epi(f) ⊆ {(r, t) : t ≥ 0}. Therefore, (0,−1) ∈ epi(f)◦. By Proposition 3.56, 0 ∈ Cf .1360

Moreover, by Theorems 3.55 and 3.51, f = σCf = γ(Cf )◦ . By Theorem 3.39 part 2., this shows that1361
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(Cf )◦ = {y ∈ Rd : f(y) ≤ 1}. By Problem 10 from the “HW for Week IX”, we have that (Cf )◦ = {y ∈ Rd :1362

(y, 1) ∈ epi(f)} = {y ∈ Rd : f(y) ≤ 1}.1363

3.6 Directional derivatives, subgradients and subdifferential calculus1364

Let us look at directional derivatives of convex functions more closely. Let f : Rd → R be any function and1365

let x ∈ Rd, and r ∈ Rd. We define the directional derivative of f at x in the direction r as:1366

f ′(x; r) := lim
t↓0

f(x + tr)− f(x)

t
, (3.5)

if that limit exists. We will be speaking of f ′(x; ·) as a function from Rd → R. When the function f is1367

convex, this function has very nice properties.1368

Lemma 3.58. If f : Rd → R is convex, the expression f(x+tr)−f(x)
t is a non-decreasing function of t.1369

Proof. By Proposition 3.26, the function φ(t) = f(x + tr) is a convex function. By Proposition 3.24, we1370

observe that φ(t)−φ(0)
t is a non-decreasing function of t.1371

Proposition 3.59. Let f : Rd → R be a convex function, and let x ∈ Rd. Then the limit in (3.5) exists for1372

all r ∈ Rd and the function f ′(x; ·) : Rd → R is sublinear.1373

Proof. By Proposition 3.26, the function φ(t) = f(x+tr) is a convex function, and f ′(x; r) = limt↓0
φ(t)−φ(0)

t .1374

By Lemma 3.58, we observe that φ(t)−φ(0)
t is a non-decreasing function of t, and restricting to t > 0, φ(t)−φ(0)

t1375

is lower bounded by the value at t = −1, i.e., φ(−1)−φ(0)
−1 . Therefore, limt↓0

φ(t)−φ(0)
t exists and is in fact1376

equal to inft>0
φ(t)−φ(0)

t .1377

We now prove positive homogeneity of f ′(x; ·). For any r ∈ Rd and λ > 0, we obtain that

f ′(x;λr) = limt↓0
f(x+tλr)−f(x)

t

= limt↓0 λ
f(x+tλr)−f(x)

λt

= λ limt↓0
f(x+tλr)−f(x)

λt

= λ limt′↓0
f(x+t′r)−f(x)

t′

= λf ′(x; r).

We next establish that f ′(x; ·) is convex. Consider any r1, r2 ∈ Rd and λ ∈ (0, 1).

f ′(x;λr1 + (1− λ)r2) = limt↓0
f(x+t(λr1+(1−λ)r2))−f(x)

t

= limt↓0 λ
f(λx+(1−λ)x+t(λr1+(1−λ)r2))−λf(x)−(1−λ)f(x)

t

= limt↓0
f(λ(x+tr1)+(1−λ)(x+tr2))−λf(x)−(1−λ)f(x)

t

≤ limt↓0
λf(x+tr1)+(1−λ)f(x+tr2)−λf(x)−(1−λ)f(x)

t

= λ limt↓0
f(x+tr1)−f(x)

t + (1− λ) limt↓0
f(x+tr2)−f(x)

t
= λf ′(x; r1) + (1− λ)f ′(x; r2),
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where the inequality follows from convexity of f . By Proposition 3.32, the function f is sublinear.1378

There is a nice connection with subgradients and subdifferentials – recall Definition 3.17. Also recall the1379

construction of the closed, convex set Cf from a sublinear function f from Theorem 3.55.1380

Theorem 3.60. Let f : Rd → R be a convex function, and let x ∈ Rd. Then

∂f(x) = Cf ′(x;·).

In other words, f ′(x; ·) is the support function for the subdifferential ∂f(x).1381

Proof. Recall from Definitions 3.14 and 3.17 that

∂f(x) = {s ∈ Rd : 〈s,y − x〉 ≤ f(y)− f(x) ∀y ∈ Rd}
= {s ∈ Rd : 〈s, r〉 ≤ f(x + r)− f(x) ∀r ∈ Rd}.

Thus, we have the following equivalences.

s ∈ ∂f(x) ⇔ 〈s, r〉 ≤ f(x + r)− f(x) ∀r ∈ Rd
⇔ 〈s, tr〉 ≤ f(x + tr)− f(x) ∀r ∈ Rd, t > 0

⇔ 〈s, r〉 ≤ f(x+tr)−f(x)
t ∀r ∈ Rd, t > 0

⇔ 〈s, r〉 ≤ f ′(x; r) ∀r ∈ Rd
⇔ s ∈ Cf ′(x;r) ∀r ∈ Rd,

where the second-to-last equivalence follows the fact that f(x+tr)−f(x)
t is a decreasing function of t by1382

Lemma 3.58, and the last equivalence follows from the definition of Cf ′(x;r) in (3.4).1383

A characterization of differentiability for convex functions can be obtained using these concepts.1384

Theorem 3.61. Let f : Rd → R be a convex function, and let x ∈ Rd. Then the following are equivalent.1385

(i) f is differentiable at x.1386

(ii) f ′(x; ·) is a linear function given by f ′(x, r) = 〈ax, r〉 for some ax ∈ Rd.1387

(iii) ∂f(x) is a singleton, i.e., there is a unique subgradient for f at x.1388

Moreover, if any of the above conditions hold then ∇f(x) = ax = s, where s is the unique subgradient in1389

∂f(x).1390

Proof. (i) =⇒ (ii). If f is differentiable, then it is well-known from calculus that f ′(x; r) = 〈∇f(x), r〉;1391

thus, setting ax = ∇f(x) suffices.1392
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Figure 2: A picture illustrating the relationship between the sublinear function f ′(x; ·), the set Cf ′(x;·), the
subgradient ∂f(x), and an affine support hyperplane given by an element s ∈ ∂f(x). Recall the relationships
from Figure 1.
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(ii) =⇒ (iii). By Theorem 3.60 and (3.4), we obtain that

∂f(x) = Cf ′(x;·)
= {s ∈ Rd : 〈s, r〉 ≤ f ′(x; r) ∀r ∈ Rd}
= {s ∈ Rd : 〈s, r〉 ≤ 〈ax, r〉 ∀r ∈ Rd}.

We now observe that if 〈s, r〉 ≤ 〈ax, r〉 for all r ∈ Rd, then we must have s = ax. Therefore, ∂f(x) = {ax}.1393

(iii) =⇒ (i). Let s be the unique subgradient at x. We will establish that

lim
h→0

|f(x + h)− f(x)− 〈s,h〉|
‖h‖ = 0,

thus showing that f is differentiable at x with gradient s. In other words, given any δ > 0, we must find1394

ε > 0 such that h ∈ B(0, ε) implies that |f(x+h)−f(x)−〈s,h〉|
‖h‖ < δ.1395

Suppose to the contrary that for some δ > 0, for every k ≥ 1 there exists hk such that ‖hk‖ =: tk ≤ 1
k

and |f(x+hk)−f(x)−〈s,hk〉|
tk

≥ δ. Since hk
tk

is a sequence of unit norm vectors, by Theorem 1.10, there is a
convergent subsequence which converges to r with unit norm. To keep the notation easy, we relabel indices
so that {hk}∞k=1 is the convergent sequence. Using Theorem 3.21, there exists a constrant L := L(B(0, 1))
such that |f(y) − f(z)| ≤ L‖y − z‖ for all y, z ∈ B(0, 1). Noting that hk and tkr for all k ≥ 1 are in the
unit ball B(0, 1) (since tk ≤ 1

k ),

δ ≤ |f(x+hk)−f(x)−〈s,hk〉|
tk

≤ |f(x+hk)−f(x+tkr)|+|f(x+tkr)−f(x)−〈s,tkr〉|+|〈s,tkr〉−〈s,hk〉|
tk

≤ L‖tkr−hk‖
tk

+ |f(x+tkr)−f(x)−〈s,tkr〉|
tk

+ |〈s,tkr〉−〈s,hk〉|
tk

≤ L‖r− hk
tk
‖+ | f(x+tkr)−f(x)

tk
− 〈s, r〉|+ ‖s‖‖r− hk

tk
‖

= (L+ ‖s‖)‖r− hk
tk
‖+ | f(x+tkr)−f(x)

tk
− 〈s, r〉|

By letting k →∞, the last expression in the above goes to 0, contradicting that δ > 0.1396

The following rules for manipulating subgradients and subdifferentials will be useful from an algorithmic1397

perspective when we discuss optimization in the next section.1398

Theorem 3.62. Subdifferential calculus. The following are all true.1399

1. Let f1, f2 : Rd → R be convex functions and let t1, t2 ≥ 0. Then

∂(t1f1 + t2f2)(x) = t1∂f1(x) + t2∂f2(x) for all x ∈ Rd.

2. Let A ∈ Rm×d and b ∈ Rm and let T (x) = Ax + b be the corresponding affine map from Rd → Rm
and let g : Rm → R be a convex function. Then

∂(g ◦ T )(x) = AT∂g(Ax + b) for all x ∈ Rd.
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3. Let fj : Rd → R, j ∈ J be convex functions for some (possibly infinite) index set J , and let f =
supj∈J fj . Then

cl(conv(∪j∈J(x)∂fj(x))) ⊆ ∂f(x),

where J(x) is the set of indices j such that fj(x) = f(x). Moreover, equality holds in the above1400

relation, if one can impose a topology on J such that J(x) is a compact set.1401

4 Optimization1402

We now being our study of the general convex optimization problem1403

inf
x∈C

f(x), (4.1)

where f : Rd → R is a convex function, and C is a closed, convex set. We first observe that local minimizers1404

are global minimizers for convex optimization problems.1405

Definition 4.1. Let g : Rd → R be any function (not necessarily convex) and let X ⊆ Rd be any set (not1406

necessarily convex). Then x? ∈ X is said to be a local minimizer for the problem infx∈X g(x) is there exists1407

ε > 0 such that g(y) ≥ g(x?) for all y ∈ B(x?, ε) ∩X.1408

x? ∈ X is said to be a global minimizer if g(y) ≥ g(x?) for all y ∈ X.1409

Note that if C is a compact, convex set, then (4.1) has a global minimizer by Weierstrass’ Theorem1410

(Theorem 1.11), because convex functions are continuous over the relative interior of their domain (Theo-1411

rem 3.21).1412

Theorem 4.2. Any local minimizer for (4.1) is a global minimizer.1413

Proof. Let x? be a local minimizer, i.e., there exists ε > 0 such that f(y) ≥ f(x?) for all y ∈ B(x?, ε) ∩ C.1414

Suppose to the contrary that there exists ȳ ∈ C such that f(ȳ) < f(x?). Then ȳ 6∈ B(x?, ε); otherwise, it1415

would contradict f(y) ≥ f(x?) for all y ∈ B(x?, ε) ∩ C. Consider the line segment [x?, ȳ]. It must intersect1416

B(x?), ε) in a point other than x?. Therefore, there exists 1 > λ > 0 such that x̄ = λx? + (1 − λ)ȳ is in1417

B(x?, ε). By convexity of f , f(x̄) ≤ λf(x?) + (1 − λ)f(ȳ). Since λ ∈ (0, 1) and f(ȳ) < f(x?), this implies1418

that f(x̄) < f(x?). Moreover, since C is convex, x̄ ∈ C, and so x̄ ∈ B(x?, ε) ∩ C. This contradicts that1419

f(y) ≥ f(x?) for all y ∈ B(x?, ε) ∩ C1420

We now give a characterization of global minimizers of (4.1) in terms of the local geometry of C and1421

the first order properties of f , i.e., its subdifferential ∂f . We first need some concepts related to the local1422

geometry of a convex set.1423

Definition 4.3. Let C ⊆ Rd be a convex set, and let x ∈ C. Define the cone of feasible directions as

FC(x) = {r ∈ Rd : ∃ε > 0 such that x + εr ∈ C}.

NOTES: 67



FC(x) may not be a closed cone – consider C as the unit circle in R2 and x = (−1, 0); then FC(x) =1424

{r ∈ R2 : r1 > 0} ∪ {0}. It is much nicer to work with its closure.1425

Definition 4.4. Let C ⊆ Rd be a convex set, and let x ∈ C. The tangent cone of C at x is TC(x) :=1426

cl(FC(x)).1427

The final concept related to the local geometry of closed, convex sets will be the normal cone.1428

Definition 4.5. Let C ⊆ Rd be a convex set, and let x ∈ C. The normal cone of C at x is NC(x) := {r ∈1429

Rd : 〈r,x〉 ≥ 〈r,y〉 ∀y ∈ C}.1430

The normal cone NC(x) is the set of vectors r ∈ Rd such that x is the maximizer over C for the1431

corresponding linear functional 〈r, ·〉, i.e., 〈r,x〉 = supy∈C〈r,y〉. Moreover, since NC(x) = {r ∈ Rd :1432

〈r,y − x〉 ≤ 0 ∀y ∈ C} which is an intersection of halfspaces with the origin on the boundary, it is1433

immediate that NC is a closed, convex cone.1434

Proposition 4.6. Let C ⊆ Rd be a convex set, and let x ∈ C. Then FC(x), TC(x) and NC(x) are all convex1435

cones, with TC(x), NC(x) being closed, convex cones. Moreover, NC(x) = TC(x)◦, i.e., the tangent cone and1436

the normal cone are polars of each other.1437

Proof. See Problem 4 in “HW for Week X”.1438

We are now ready to state the characterization of a global minimizer of (4.1), in terms of the local1439

geometry of C and the first-order information of f .1440

Theorem 4.7. Let f : Rd → R be a convex function, and C be a closed, convex set. Then the following are1441

all equivalent.1442

1. x? is a global minimizer of (4.1).1443

2. f ′(x?; y − x?) ≥ 0 for all y ∈ C.1444

3. f ′(x?; r) ≥ 0 for all r ∈ TC(x?).1445

4. 0 ∈ ∂f(x?) +NC(x?).1446

Proof. 1. =⇒ 2. Since f(z) ≥ f(x?) for all z ∈ C, in particular this holds for z = x + t(y − x) for all1447

0 ≤ t ≤ 1. Therefore, f(x?+t(y−x?))−f(x?)
t ≥ 0 for all t ∈ (0, 1). Taking the limit as t → 0, we obtain that1448

f ′(x?; y − x?) ≥ 0.1449

2. =⇒ 3. We first show that f ′(x?; r) ≥ 0 for all x ∈ FC(x). Let ε > 0 such that y = x? + εr ∈ C.1450

By assumption, 0 ≤ f ′(x?; y− x?) = f ′(x?; εr) = εf ′(x; r), using the positive homogeneity of f ′(x?; ·), since1451

f ′(x?; ·) is sublinear by Proposition 3.59. Diving by ε, we obtain that f ′(x?; r) ≥ 0 for all r ∈ FC(x?).1452
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Since f ′(x?; ·) is sublinear, it is convex by Proposition 3.32, and thus, it is continuous by Theorem 3.21.1453

Consequently, it must be nonnegative on TC(x) = cl(FC(x)), because it is nonnegative on FC(x).1454

3. =⇒ 4. Suppose to the contrary that 0 6∈ ∂f(x?) + NC(x?). Since f is assumed to be finite-valued1455

everywhere, dom(f) = Rd. Thus, by Problem 15 in “HW for Week X”, ∂f(x?) is a compact, convex set.1456

Moreover, NC(x?) is a closed, convex cone by Proposition 4.6. Therefore, by Problem 6 in “HW for Week1457

I/II”, ∂f(x?)+NC(x?) is a closed, convex set. By the separating hyperplane theorem (Theorem 2.20), there1458

exist a ∈ Rd, δ ∈ R such that 0 = 〈a,0〉 > δ ≥ 〈a,v〉 for all v ∈ ∂f(x?) +NC(x?).1459

First, we claim that 〈a,n〉 ≤ 0 for all n ∈ NC(x?). Otherwise, consider n̄ ∈ NC(x?) such that 〈a, n̄〉 > 0.1460

Since NC(x?) is a closed, convex cone, λn̄ ∈ NC(x?) for all λ ≥ 0. But then consider any s ∈ ∂f(x) (which1461

is nonempty by Problem 15 in “HW for Week X”) and the set of points s + λn̄. Since 〈a, n̄〉 > 0, we can1462

find λ ≥ 0 large enough such that 〈a, s +λn̄〉 > δ, contradicting that δ ≥ 〈a,v〉 for all v ∈ ∂f(x?) +NC(x?).1463

Since 〈a,n〉 ≤ 0 for all n ∈ NC(x?), we obtain that a ∈ NC(x?)◦ = TC(x?), by Proposition 4.6. Now1464

we use the fact that ∂f(x?) ⊆ ∂f(x?) + NC(x?), since 0 ∈ NC(x?). This implies that 〈a, s〉 ≤ δ < 01465

for all s ∈ ∂f(x?). Since ∂f(x?) is a compact, convex set, this implies that sups∈∂f(x?)〈a, s〉 < 0. From1466

Theorem 3.60, f ′(x?; a) = σ∂f(x?)(a) = sups∈∂f(x?)〈a, s〉 < 0. This contradicts the assumption of 3., because1467

we showed above that a ∈ TC(x?).1468

4. =⇒ 1. Consider any y ∈ C. Since 0 ∈ ∂f(x?) +NC(x?), there exist s ∈ ∂f(x?) and n ∈ NC(x?) such
that 0 = s + n. Now, y − x? ∈ TC(x?) and so 〈y − x?,n〉 ≤ 0 by Proposition 4.6. Since we have

0 = 〈y − x?,0〉 = 〈y − x?, s〉+ 〈y − x?,n〉,
this implies that 〈y − x?, s〉 ≥ 0. By definition of subgradient, f(y) ≥ f(x?) + 〈s,y − x?〉 ≥ f(x?). Since1469

the choice of y ∈ C was arbitrary, this shows that x? is a global minimizer.1470

Algorithmic setup: First-order oracles. To tackle the problem (4.1) computationally, we have to set1471

up a precise way to access the values/subgradients of the function f and test if given points belong to the1472

set C or not. To make this algorithmically clean, we define first-order oracles.1473

Definition 4.8. A first order oracle for a convex function f : Rd → R is an oracle/algorithm/black-box that1474

takes as input any x ∈ Rd and returns f(x) and some s ∈ ∂f(x). A first order oracle for a closed, convex set1475

C ⊆ Rd is an oracle/algorithm/black-box that takes as input any x ∈ Rd and either correctly reports that1476

x ∈ C or correctly reports a separating hyperplane separating x from C, i.e., it returns a ∈ Rd, δ ∈ R such1477

that C ⊆ H−(a, δ) and 〈a,x〉 > δ. Such an oracle is also known as a separation oracle.1478

4.1 Subgradient algorithm1479

To build up towards an algorithm that assumes only first-order oracles for f and C, we will first look at1480

the situation where we have a first order oracle for f , and a stronger oracle for C which, given any x ∈ Rd,1481

can report the closest point in C to x. Recall that in the proof of Theorem 2.20, we had shown that such a1482

closest point always exists as long as C is a closed, convex set.1483
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Definition 4.9. ProjC(x) will denote the closest point (under the standard Euclidean norm) in C to x.1484

Note that an oracle that reports ProjC(x) for any x ∈ Rd is stronger than a separation oracle for C,1485

because ProjC(x) = x if and only if x ∈ C, and when ProjC(x) 6= x, then one can use a = x − ProjC(x)1486

and δ = 〈a,ProjC(x)〉 as a separating hyperplane; see the proof of Theorem 2.20. Even so, for “simple”1487

sets C, computing ProjC(x) is not a difficult task. For example, when C = Rd+, then ProjC(x) = y, where1488

yi = max{0,xi} for all i = 1, . . . , d.1489

We now give a simple and elegant algorithm to solve the problem 4.1 when one has access to an oracle1490

that can output ProjC(x) for any x ∈ Rd, and a first-order oracle for f . The algorithm does not assume1491

any properties beyond convexity for the function f (e.g., differentiability). Note that, in particular, when1492

we have no constraints, i.e., C = Rn, then ProjC(x) = x for all x ∈ Rn. Therefore, this algorithm can be1493

used for unconstrained optimization of general convex functions with only a first-order oracle for f .1494

Subgradient Algorithm.1495

1. Choose any sequence h0, h1, . . . , of strictly positive numbers. Let x0 ∈ Rd.1496

2. For i = 1, 2, . . ., do1497

(a) Use the first-order oracle for f to get some si ∈ ∂f(xi).1498

(b) Set xi+1 = ProjC
(
xi − hi si

‖si‖
)
.1499

The points x0,x1, . . . will be called the iterates of the Subgradient Algorithm. We now do a simple1500

convergence analysis for the algorithm. First, a simple observation about the point ProjC(x).1501

Lemma 4.10. Let C ⊆ Rd be a closed, convex set, let x? ∈ C and x ∈ Rd (not necessarily in C). Then

‖ProjC(x)− x?‖ ≤ ‖x− x?‖.

Proof. The proof of Theorem 2.20 shows that if we set a = x−ProjC(x), then 〈a,ProjC(x)− y〉 ≥ 0 for all
y ∈ C; in particular, 〈a,ProjC(x)− x?〉 ≥ 0. We now observe that

‖x− x?‖2 = ‖x− ProjC(x) + ProjC(x)− x?‖2
= ‖a + ProjC(x)− x?‖2
= ‖a‖2 + ‖ProjC(x)− x?‖2 + 2〈a,ProjC(x)− x?〉
≥ ‖ProjC(x)− x?‖2,

since 〈a,ProjC(x)− x?〉 ≥ 0.1502

Theorem 4.11. Let f : Rd → R be a convex function, and let x? ∈ arg minx∈C f(x). Suppose x0 ∈ B(x?, R)
for some real number R ≥ 0. Let M := M(B(x?, R)) be a Lipschitz constant for f , guaranteed to exist by
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Theorem 3.21, i.e., |f(x) − f(y)| ≤ M‖x − y‖ for all x,y ∈ B(x?, R). Let x0,x1, . . . be the sequence of
iterates obtained by the Subgradient Algorithm above. Then,

min
i=0,...,k

f(xi) ≤ f(x?) +M

(
R2 +

∑k
i=0 h

2
i

2
∑k
i=0 hi

)
.

Proof. Define ri = ‖xi − x?‖ and vi = 〈si,xi−x?〉
‖si‖ for i = 0, 1, 2 . . . ,. We next observe that

r2
i+1 = ‖ProjC

(
xi − hi si

‖si‖
)
− x?‖2

≤ ‖xi − hi si

‖si‖ − x?‖2 by Lemma 4.10

= ‖xi − x?‖2 + h2
i − 2hivi

= r2
i + h2

i − 2hivi

Adding these inequalities for i = 0, 1, . . . , k, we obtain that1503

r2
k+1 ≤ r2

0 +

k∑
i=0

h2
i − 2

k∑
i=0

hivi. (4.2)

Let vmin = mini=0,...,k vi and let imin be such that vmin = vimin . Using the fact that r2
0 = ‖x0 − x?‖2 ≤ R2,

and that r2
k+1 ≥ 0, we obtain from (4.2) that

vmin(2

k∑
i=0

hi) ≤ 2

k∑
i=0

hivi ≤ R2 +

k∑
i=0

h2
i .

Consequently,1504

vmin ≤
R2 +

∑k
i=0 h

2
i

2
∑k
i=0 hi

. (4.3)

Consider the hyperplane H := H(si
min

, 〈simin

,xi
min〉) passing through xi

min

, orthogonal to si
min

. Let
x̄ be the point on H closest to x?. By Problem 12 in “HW for Week XI”, vmin = ‖x̄ − x?‖. Moreover,
vmin ≤ v0 ≤ ‖x0 − x?‖ ≤ R. Therefore, x̄ ∈ B(x?, R). Using the Lipschitz constant M , we obtain that

f(x̄) ≤ f(x?) + Mvmin. Finally, since si
min ∈ ∂f(xi

min

), we must have that f(x̄) ≥ f(xi
min

) + 〈simin

, x̄ −
xi

min〉 = f(xi
min

), since x̄ ∈ H. Therefore, we obtain

min
i=0,...,k

f(xi) ≤ f(xi
min

) ≤ f(x̄) ≤ f(x?) +Mvmin ≤ f(x?) +M

(
R2 +

∑k
i=0 h

2
i

2
∑k
i=0 hi

)
,

where the last inequality follows from (4.3); see Figure 3.1505
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x?

x̄

ximin

si
min

vmin

〈simin
,y〉 = 〈simin

,ximin〉

Figure 3: Using vmin to bound the function value.

If we fix the number of steps of the algorithm to be N ∈ N, then the choice of h0, . . . , hN that minimizes1506

R2+
∑k
i=0 h

2
i

2
∑k
i=0 hi

is where hi = R√
N+1

for all i = 0, . . . , N , which yields the following corollary.1507

Corollary 4.12. Let f : Rd → R be a convex function, and let x? ∈ arg minx∈Rn f(x). Suppose x0 ∈
B(x?, R) for some real number R ≥ 0. Let M := M(B(x?, R)) be a Lipschitz constant for f . Let N ∈ N
be any natural number, and set hi = R√

N+1
for all i = 0, . . . , N . Then the iterates of the Subgradient

Algorithm, with this choice of hi, satisfy

min
i=0,...,N

f(xi) ≤ f(x?) +
MR√
N + 1

.

Turning this around, if we want to be within ε of the optimal value f(x?) for some ε > 0, we should run1508

the Subgradient Algorithm for M2R2

ε2 iterates, with hi = ε
M .1509

If we theoretically let the algorithm run for infinitely many steps, we would hope to make the difference1510

between mini f(xi) and f(x?) go to 0 in the limit. This, of course, depends on the choice of the sequence1511

h0, h1, . . . so that the expression
R2+

∑k
i=0 h

2
i

2
∑k
i=0 hi

→ 0 as k → ∞. There is a general sufficient condition that1512

guarantees this.1513
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Corollary 4.13. Let {hi}∞i=0 be a sequence of strictly positive real numbers such that limi→∞ hi = 0 and∑∞
i=1 hi =∞. Then, for any real number R,

lim
k→∞

R2 +
∑k
i=0 h

2
i

2
∑k
i=0 hi

= 0.

Remark 4.14. Corollary 4.12 shows that the subgradient algorithm has a convergence that is independent1514

of the dimension! Now matter how large d is, as long as one can access subgradients for f and project to1515

C, the number of iterations needed to converge to within ε is O( 1
ε2 ). This is important to keep in mind for1516

applications where the dimension is extremely large.1517

4.2 Generalized inequalities and convex mappings1518

We first review the notion of a partially ordered set.1519

Definition 4.15. Let X be any set. A partial order on X is binary relation on X, i.e., a subset R ⊆ X ×X1520

that satisfies certain conditions. We will denote x 4 y for x, y ∈ X if (x, y) ∈ R. The conditions are as1521

follows:1522

1. x 4 x for all x ∈ X.1523

2. x 4 y and y 4 z implies x 4 z.1524

3. x 4 y and y 4 x if and only if x = y.1525

We would like to be able to define partial orders on Rm for any m ≥ 1. In doing so, we want to be1526

mindful of the vector space structure of Rm.1527

Definition 4.16. We will say that a binary relation on Rm is a generalized inequality, if it satisfies the1528

following conditions.1529

1. x 4 x for all x ∈ Rm.1530

2. x 4 y and y 4 z implies x 4 z.1531

3. x 4 y and y 4 x if and only if x = y.1532

4. x 4 y implies x + z 4 y + z for all z ∈ Rm.1533

5. x 4 y implies λx 4 λy for all λ ≥ 0.1534

Generalized inequalities have an elegant geometric characterization.1535
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Proposition 4.17. Let K ⊆ Rm be a closed, convex, pointed cone. Then, the relation on Rm defined by1536

x 4K y if and only if y− x ∈ K, is a generalized inequality. In this case, we say that 4K is the generalized1537

inequality induced by K.1538

Conversely, any generalized inequality 4 is induced by a unique cone given by K4 = {x ∈ Rd : 0 4 x}.1539

In other words, 4 is the same relation as 4K4 .1540

Proof. Left as an exercise.1541

Example 4.18. Here are some examples of generalized inequalities.1542

1. K = Rm+ induces the generalized inequality x 4K y if and only if xi ≤ yi for all i = 1 . . . ,m. This is1543

often abbreviated to x ≤ y, and is sometimes called the “canonical” generalized inequality on Rm.1544

2. K = {x ∈ Rd :
√

x2
1 + . . .+ x2

d−1 ≤ xd}. This cone is called the Lorentz cone, and the corresponding1545

generalized inequality is called a second order cone constraints (SOCC).1546

3. Let m = n2 for some n ∈ N, i.e., consider the space Rn2

. Identifying Rn2

= Rn×n with some ordering of1547

the coordinates, we think of Rn2

as the space of all n×n matrices. Let K be the cone of all symmetric1548

matrices that are positive semidefinite; see Definition 1.19. The corresponding generalized inequality1549

on Rn2

is called the positive semidefinite cone constraint.1550

We would like to extend the notion of convex functions to vector valued maps, for which we will use the1551

notion of generalized inequalities.1552

Definition 4.19. Let 4K be a generalized inequality on Rm induced by the cone K. We say that G : Rd →
Rm is a K-convex mapping if

G(λx + (1− λ)y) 4K λG(x) + (1− λ)G(y)

for all x,y ∈ Rd and λ ∈ (0, 1).1553

Example 4.20. Here are some examples of K-convex mappings.1554

1. Let K ⊆ Rm be any closed, convex, pointed cone. If G : Rd → Rm is an affine map, i.e., there exist a1555

matrix A ∈ Rm×d and a vector b ∈ Rm such that G(x) = Ax + b, then G is a K-convex mapping.1556

2. Let m = n2 for some n ∈ N, i.e., consider the space Rn2

and let 4 be the positive semidefinite cone
constraint from part 3. of Example 4.18, i.e., induced by the cone K of positive semidefinite matrices.
Let A0, A1, . . . , Ad be fixed p × n matrices, for some p ∈ N (not necessarily equal to n). Define

G : Rd × R→ Rn2

to be the mapping

G(x, s) = (A0 + x1A1 + . . .+ xdAd)
T (A0 + x1A1 + . . .+ xdAd)− sIn,

where In is the n× n identity matrix. Then G is a K-convex mapping.1557
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3. Let K = Rm+ , and let g1, . . . , gm : Rd → R be convex functions. Let G : Rd → Rm be defined as1558

G(x) = (g1(x), . . . , gm(x)), then G is a K-convex mapping.1559

4.3 Convex optimization with generalized inequalities1560

We can now define a very general framework for convex optimization problems, which is more concrete than1561

the abstraction level of black-box first-order oracles, but is still flexible enough to incorporate the majority1562

of convex optimization problems that show up in practice.1563

Definition 4.21. Let f : Rd → R be a convex function, let K ⊆ Rm be a closed, convex cone, and let1564

G : Rd → Rm be a K-convex mapping. Then f,K,G define a convex optimization problem with generalized1565

constraints given as follows1566

inf{f(x) : G(x) 4K 0}. (4.4)

Problem 3 in “HW for Week XI” shows that the set C = {x ∈ Rd : G(x) 4K 0} is a convex set, when G1567

is a K-convex mapping. Thus, (4.4) is a special case of (4.1).1568

Example 4.22. Let us look at some concrete examples of (4.4).1569

1. Linear/Quadratic Programming. Let f(x) = 〈c,x〉 for some c ∈ Rd, let K = Rm+ and let
G : Rd → Rm be an affine map, i.e., G(x) = Ax− b for some matrix A ∈ Rm×d and a vector b ∈ Rm.
Then (4.4) becomes

inf{〈c,x〉 : Ax ≤ b}
which is the problem of minimizing a linear function over a polyhedron. This is more commonly known1570

as a linear program, in accordance with the fact that the objective and the constraints are all linear.1571

If f(x) = xTQx + 〈c,x〉 where Q is a given d× d positive semidefinite matrix, and c ∈ Rd, then f is a1572

convex function (see Problem 14 from “HW for Week XI”). With K and G as above, (4.4) is called a1573

convex quadratic program.1574

2. Semidefinite Programming. Let m = n2 for some n ∈ N and consider the space Rn2

. Let f(x) =

〈c,x〉 for some c ∈ Rd, let K ⊆ Rn2

be the positive semidefinite cone, including the positive semidefinite

cone constraint, and let G : Rd → Rn2

be an affine map, i.e., there exist n× n matrices F0, F1, . . . , Fd
such that G(x) = F0 + x1F1 + . . .+ xdFd. Then (4.4) becomes

inf{〈c,x〉 : −F0 − x1F1 − . . .− xdFd is a PSD matrix}.
This is known as a semidefinite program.1575

3. Convex optimization with explicit constraints. Let f, g1, . . . , gm : Rd → R be convex functions.
Define K = Rm+ and define G : Rd → Rm as G(x) = (g1(x), . . . , gm(x)), which is the K-convex mapping
from Example 4.20. Then (4.4) becomes

inf{f(x) : g1(x) ≤ 0, . . . , gm(x) ≤ 0}.
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4.3.1 Lagrangian duality for convex optimization with generalized constraints1576

Given that the Subgradient Algorithm is a simple and elegant method for solving unconstrained problems,1577

or problems with “simple” constraint sets C (i.e., when one can compute ProjC(x) efficiently), we will try to1578

transform convex optimization problems with more complicated constraints into ones with simple constraints.1579

This is the motivation for what is known as Lagrangian duality.1580

Note that problem (4.4) is equivalent to the problem1581

inf
x∈Rd

f(x) + I−K(G(x)), (4.5)

where I−K is the indicator function for the cone −K. It can be shown that the function I−K ◦ G is a1582

convex function – see Problem 4 from “HW for Week XI”. Thus, problem (4.5) is an unconstrained convex1583

optimization problem. However, indicator functions are nasty to deal with because they are not finite valued,1584

and thus, obtaining subgradient at all points becomes impossible. Thus, we try to replace I−K with a “nicer”1585

penalty function p : Rm → R, which is not that wildly discontinuous, and is finite-valued everywhere. So we1586

would be looking at the problem1587

inf
x∈Rd

f(x) + p(G(x)), (4.6)

What properties should we require from our penalty function? First we would like problem (4.6) to be a1588

convex problem, thus, we impose that1589

p ◦G : Rd → R is a convex function. (4.7)

Next, from an optimization perspective, we would like to have guaranteed relationship between the function1590

f(x)+I−K(G(x)) and the function f(x)+p(G(x)). It turns out that a nice property to have is the guarantee1591

that f(x) + p(G(x)) ≤ f(x) + I−K(G(x)) for all x ∈ Rd. This can be achieved by imposing that1592

p is an underestimator of I−K , i.e., p ≤ I−K . (4.8)

Lagrangian duality theory is the study of penalty functions p that are linear on Rm, and satisfy the two1593

conditions highlighted above. Now a function p : Rm → R is linear if and only if there exists c ∈ Rm such1594

that p(z) = 〈c, z〉. The following proposition characterizes linear functions that satisfy the two conditions1595

above.1596

Proposition 4.23. Let p : Rm → R be a linear function given by p(z) = 〈c, z〉 for some c ∈ Rm. Then the1597

following are equivalent:1598

1. p satisfies condition (4.8).1599

2. c ∈ −K◦, i.e., −c is in the polar of K.1600
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3. p satisfies conditions (4.7) and (4.8).1601

Proof. (1. =⇒ 2.) Condition (4.8) is equivalent to saying that p(z) ≤ 0 for all z ∈ −K, i.e.,

〈c, z〉 ≤ 0 for all z ∈ −K
⇔ 〈c,−z〉 ≤ 0 for all z ∈ K
⇔ 〈−c, z〉 ≤ 0 for all z ∈ K
⇔ −c ∈ K◦
⇔ c ∈ −K◦

1602

(2. =⇒ 3.) We showed above that assuming c ∈ −K◦ is equivalent to condition (4.8). We now check
that c ∈ −K◦ implies (4.7). Since G is a K-convex mapping, we have that for all x,y ∈ Rd and λ ∈ (0, 1),

〈c, λG(x) + (1− λ)G(y)−G(λx + (1− λ)y)〉 ≥ 0
=⇒ 〈c, λG(x)〉+ 〈c, (1− λ)G(y)〉 ≥ 〈c, G(λx + (1− λ)y)〉
=⇒ λ〈c, G(x)〉+ (1− λ)〈c, G(y)〉 ≥ 〈c, G(λx + (1− λ)y)〉
=⇒ λp(G(x)) + (1− λ)p(G(y)) ≥ p(G(λx + (1− λ)y))

Hence, condition (4.7) is satisfied.1603

(3. =⇒ 1.) Trivial.1604

Definition 4.24. The set −K◦ is important in Lagrangian duality, and a separate notation and name has1605

been invented: −K◦ is called the dual cone of K and is denoted by K?.1606

The above discussions show that for any y ∈ K?, the optimal value of the (4.6), with p given by1607

p(z) = 〈y, z〉, is a lower bound on the optimal value of (4.4). This motivates definition of the so-called dual1608

function L : Rm → R associated with (4.4) as follows:1609

L(y) := inf
x∈Rd

f(x) + 〈y, G(x)〉 (4.9)

We state the lower bound property formally.1610

Proposition 4.25. [Weak Duality] Let f : Rd → R be convex, let K ⊆ Rm be a closed, convex cone, and1611

let G : Rd → Rm be a K-convex mapping. Let L : Rm → R be as defined in (4.9). Then, for all x̄ ∈ Rd such1612

that G(x̄) 4K and all ȳ ∈ K?, we must have L(ȳ) ≤ f(x̄). Consequently, L(ȳ) ≤ inf{f(x) : G(x) 4K 0}.1613

Proof. We simply follow the inequalities

L(ȳ) = infx∈Rd f(x) + 〈y, G(x)〉
≤ f(x̄) + 〈y, G(x̄)〉
≤ f(x̄),

where the last inequality holds because G(x) 4K and ȳ ∈ K?, and so 〈y, G(x̄)〉 ≤ 0.1614
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Proposition 4.25 shows that any y ∈ K? provides the lower bound L(y) on the optimal value of the1615

optimization problem (4.4). The Lagrangian dual optimization problem is the problem of finding the y ∈ K?
1616

that provides the best/largest lower bound. In other words, the Lagrangian dual problem is defined as1617

sup
y∈K?

L(y), (4.10)

and Proposition 4.25 can be restated as1618

sup{L(y) : y ∈ K?} ≤ inf{f(x) : G(x) 4K 0}. (4.11)

If we have equality in (4.11), then to solve (4.4), one can instead solve (4.10). This merits a definition.1619

Definition 4.26 (Strong Duality). We say that we have a zero duality gap if equality holds in (4.11). In1620

addition, if the supremum in (4.10) is attained for some y ∈ K?, then we say that strong duality holds.1621

4.3.2 Solving the Lagrangian dual problem1622

Before we investigate conditions under which we have zero duality gap or strong duality, let us try to see1623

how one use the subgradient algorithm to solve (4.10).1624

Proposition 4.27. L(y) is a concave function of y.1625

Proof. We have to show that −L(y) is a convex function of y. This follows from the fact that

−L(y) = − infx∈Rd f(x) + 〈y, G(x)〉
= supx∈Rd −f(x) + 〈y,−G(x)〉,

i.e., −L(y) is the supremum of affine functions of y of the form −f(x) + 〈y,−G(x)〉. By part 2. of1626

Theorem 3.12, −L(y) is convex in y.1627

We could now use the subgradient algorithm to solve (4.10), if we had a first order oracle for L(y) and an1628

algorithm to project to K?. We show that a subgradient for −L(y) can be found by solving an unconstrained1629

convex optimization problem.1630

Proposition 4.28. Let ȳ ∈ Rm and let x̄ ∈ arg infx∈Rd f(x) + 〈ȳ, G(x)〉. Then −G(x̄) ∈ ∂(−L)(ȳ).1631

Proof. We express −L(y) = supx∈Rd −f(x) + 〈y,−G(x)〉 as the supremum of affine functions, and use part1632

3. of Theorem 3.62, and the fact that the subdifferential of the affine function −f(x̄) + 〈y,−G(x̄), at ȳ is1633

simply −G(x̄).1634

Now if we have an algorithm that can compute ProjK?(y) for all y ∈ Rm, then using Propositions 4.271635

and 4.28, one can solve the Lagrangian dual problem (4.10), where in each iteration of the algorithm, one1636

solves the unconstrained problem infx∈Rd f(x) + 〈ȳ, G(x)〉 for a given ȳ ∈ K?. This can, in turn, be solved1637

by the subgradient algorithm if one has the appropriate first order oracles for f(x) and 〈ȳ, G(x)〉.1638
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4.3.3 Explicit examples of the Lagrangian dual1639

We will now explore some special settings of convex optimization problems with generalized inequalities, and1640

see that the Lagrangian dual has a particularly nice form.1641

Conic optimization. Let K ⊆ Rm be a closed, convex, pointed cone. Let G : Rd → Rm be an affine map1642

given by G(x) = Ax − b, where A ∈ Rm×n and b ∈ Rm. Let f : Rd → R be a linear function given by1643

f(x) = 〈c,x〉 for some c ∈ Rd. Then Problem 4.4 becomes1644

inf{〈c,x〉 : Ax 4K b}. (4.12)

For a fixed cone K, problems of the form (4.12) with are called conic optimization problems over the cone1645

K. As we pick different data A,b, c, we get different instances of a conic optimization problem over the1646

cone K. A special case is when K = Rm+ , which is known as linear programming or linear optimization – see1647

Example 4.22 – which is the problem of optimizing a linear function over a polyhedron.1648

Let us investigate the dual function of (4.12). Recall that L(y) = infx∈Rd f(x) + 〈y, G(x)〉, which in this
case becomes

infx∈Rd〈c,x〉+ 〈y, Ax− b〉 = infx∈Rd〈c,x〉+ 〈y, Ax〉 − 〈y,b〉
= infx∈Rd〈c,x〉+ 〈ATy,x〉 − 〈y,b〉
= infx∈Rd〈c +ATy,x〉 − 〈y,b〉.

Now, if c + ATy 6= 0, then the infimum above is clearly −∞. And if c + ATy = 0, then the infimum is1649

−〈b,y〉. Therefore, for (4.12), the dual function is given by1650

L(y) =

{
−∞ c +ATy 6= 0
−〈b,y〉 c +ATy = 0

(4.13)

Therefore,

sup
y∈K?

L(y) = sup{−〈b,y〉 : ATy = −c, y ∈ K?} = − inf{〈b,y〉 : ATy = −c, y ∈ K?}.

To remove the slightly annoying minus sign in front of c above, it is more standard to write (4.12) as1651

− sup{〈−c,x〉 : Ax 4K b}, and then replace −c with c throughout the above derivation. Thus, the1652

standard primal dual pairs for conic optimization problems are1653

sup{〈c,x〉 : Ax 4K b} ≤ inf{〈b,y〉 : ATy = c, y ∈ K?}. (4.14)

Linear Programming/Optimization. Specializing to the linear programming case with K = Rm+ and observing1654

that K? = K = Rm+ (see Problem 2 from “HW for Week III”), we obtain the primal dual pair1655

sup{〈c,x〉 : Ax ≤ b} ≤ inf{〈b,y〉 : ATy = c, y ≥ 0}. (4.15)

NOTES: 79



Semidefinite Programming/Optimization. Another special case is that of semidefinite optimization. This is1656

the situation when m = n2 and K is the cone of positive semidefinite matrices. G : Rd → Rn2

is an affine1657

map from Rd to the space of n×n matrices. To avoid dealing with asymmetric matrices, G is always assumed1658

to be of the form G(x) = x1A1 + . . .+ xdAd − A0, where A0, A1, . . . , Ad are n× n symmetric matrices4. If1659

one works though the algebra in this case and uses the fact that the positive semidefinite cone is self-dual,1660

i.e., K = K?, (4.14) becomes1661

sup{〈c,x〉 : x1A1 + . . .+ xdAd −A0 is a PSD matrix} ≤ inf{〈A0, Y 〉 : 〈Ai, Y 〉 = ci, Y is a PSD matrix},

where 〈X,Z〉 =
∑
i,j XijZij for any pair X,Z of n× n symmetric matrices.1662

Convex optimization with explicit constraints and objective. Recall part 3. if Example 4.22, where
K = Rm+ , f, g1, . . . , gm : Rd → R are convex functions, and G : Rd → Rm as G(x) = (g1(x), . . . , gm(x)),
giving the explicit problem

inf{f(x) : g1(x) ≤ 0, . . . , gm(x) ≤ 0}.
In this case, since K? = K = Rm+ (see Problem 2 from “HW for Week III”), the dual problem is

sup
y∈K?

L(y) = sup
y≥0

inf
x∈Rd
{f(x) + y1g1(x) + . . . ,ymgm(x)}.

A closer look at linear programming duality. Consider the following linear program:1663

sup 2x1 − 1.5x2

x1 + x2 ≤ 1
x1 − x2 ≤ 1
−x1 + x2 ≤ 1
−x1 − x2 ≤ 1

(4.16)

To solve this problem, let us make some simple observations. If we multiply the first inequality by 0.5,1664

the second inequality by 3.5, the third by 1.75 and the fourth by 0.25 and add all these scaled inequalities,1665

then we obtain the inequality 2x1−1.5x2 ≤ 6. Now any x ∈ R2 satisfying the constraints of the above linear1666

program must also satisfy this new inequality. This shows that our supremum is at most 6. Now if we choose1667

another set of multipliers : 0.25, 1.75, 0, 0 (in order), then we obtain the inequality 2x1 − 1.5x2 ≤ 2, which1668

gives a better bound of 2 ≤ 6 on the optimal solution value. Now, consider the point x1 = 1, x2 = 0: this1669

have value 2 · 1− 1.5 · 0 = 2. Since we have an upper bound of 2 from the above arguments, we know that1670

x1 = 1, x2 = 0 is actually the optimal solution to the above linear program! Thus, we have provided the1671

optimal solution, and a quick certificate of its optimality. If you think about how we were deriving the upper1672

bounds of 6 and 2, we were looking for nonnegative multipliers y1, y2, y3, y4 such that the corresponding1673

4Dealing with asymmetric matrices is not hard, but involves little details that can be overlooked for this exposition, and
don’t provide any great insight.
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combination of the inequalities gives us 2x1 − 1.5x2 on the left hand side, and the upper bound was simply1674

the right hand side of the combined inequality, which is, y1 + y2 + y3 + y4. If the right hand side is to end1675

up as 2x1 − 1.5x2, then we must have y1 + y2 − y3 − y4 = 2 and y1 − y2 + y3 − y4 = −1.5. To get the best1676

upper bound, we want to find the minimum value of y1 + y2 + y3 + y4 such that y1 + y2 − y3 − y4 = 2 and1677

y1 − y2 + y3 − y4 = −1.5, and all yi’s are nonnegative. But this is exactly the dual problem in (4.15). We1678

hope this gives the reader a more “hands-on” perspective on the Lagrangian dual of a linear program.1679

4.3.4 Strong duality: sufficient conditions and complementary slackness1680

In the above example of the linear program in (4.16), it turned out that we could find a primal feasible1681

solution and a dual feasible solution that have the same value, which shows that we have strong duality, and1682

certifies the optimality of the two solutions. We will see below that this always happens for linear programs.1683

For general conic optimization problems, or a convex optimization problem with generalized inequalities,1684

this does not always hold and one may not even have zero duality gap. We now supply two conditions under1685

which strong duality is obtained. Linear programming strong duality will be a special case of the second1686

condition.1687

Slater’s condition for strong duality. The following is perhaps the most well-known sufficient condition1688

in convex optimization that guarantees strong duality.1689

Theorem 4.29. [Slater’s condition] Let f : Rd → R be convex, let K ⊆ Rm be a closed, convex cone, and1690

let G : Rd → Rm be a K-convex mapping. Let L : Rm → R be as defined in (4.9). If there exists x̄ such1691

that −G(x̄) ∈ int(K) and inf{f(x) : G(x) 4K 0} is a finite value, then there exists y? ∈ K? such that1692

supy∈K? L(y) = L(y?) = inf{f(x) : G(x) 4K 0}, i.e., strong duality holds.1693

Before we begin the proof, we need to establish a slight variant of the separating hyperplane theorem,1694

that does not make any closedness or compactness assumptions.1695

Proposition 4.30. Let A,B ⊆ Rd be convex sets (not necessarily closed) such that A∩B = ∅. Then there1696

exist a ∈ Rd and δ ∈ R such that 〈a,x〉 ≥ 〈a,y〉 for all x ∈ A,y ∈ B.1697

Proof. Left as an exercise.1698

Proof of Theorem 4.29. Let µ0 = inf{f(x) : G(x) 4K 0} <∞. Define the sets1699

A = {(z, r) ∈ Rm × R : ∃x ∈ Rd such that f(x) ≤ r, G(x) 4K z},
B = {(z, r) ∈ Rm × R : r < µ0, z 4K 0}.

It is not hard to verify that A,B are convex. Moreover, since µ0 = inf{f(x) : G(x) 4K 0} < ∞, it is also1700

not hard to verify that A ∩B = ∅. By Proposition 4.30, there exists a ∈ Rm, γ ∈ R such that1701

〈a, z1〉+ γr1 ≥ 〈a, z2〉+ γr2 (4.17)

for all (z1, r1) ∈ A and (z2, r2) ∈ B.1702
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Claim 3. a ∈ K? and γ ≥ 0.1703

Proof of Claim. Suppose the contrary that a 6∈ K?. Then a 6∈ −K◦ = (−K)◦. Thus, there exists z̄ ∈ −K,1704

i.e., z̄ 4K 0, such that 〈a, z̄〉 > 0. Now (4.17) holds with z1 = G(x̄) (x̄ is the point in the hypothesis of the1705

theorem), r1 = f(x̄), r2 = µ0− 1 and z2 = λz̄ for all λ ≥ 0. But since 〈a, z̄〉 > 0, the inequality (4.17) would1706

be violated for large enough λ. Thus, we must have a ∈ K?.1707

Similarly, (4.17) holds with z1 = G(x̄), r1 = f(x̄), z2 = z̄ and all r2 < µ0. If γ < 0, then letting r2 → −∞1708

would violate (4.17).1709

We now show that, in fact, γ > 0. Substitute z1 = G(x̄) (x̄ is the point in the hypothesis of the theorem),
r1 = f(x̄), r2 = µ0 − 1 and z2 = 0 in (4.17). If γ = 0, then this relation becomes

〈a, G(x̄)〉 ≥ 0.

However, since −G(x̄) ∈ int(K) and therefore, 〈a, G(x̄)〉 < 0 (see Problem 3 from “HW for Week II”). By1710

Claim 3, γ > 0.1711

Let y? := a
γ ; by Claim 3, y? ∈ K?. We will now show that for every ε > 0, L(y?) ≥ µ0 − ε. This will

establish the result because this means L(y?) ≥ µ0 and since L(y) ≤ µ0 for all y ∈ K? by Proposition 4.25,
we must have supy∈K? L(y) = L(y?) = µ0. Consider any x ∈ Rd. z1 = G(x) and r1 = f(x) gives a point
in A. Substituting into (4.17) with z2 = 0 and r2 = µ0 − ε, we obtain that 〈a, G(x)〉 + γf(x) ≥ γ(µ0 − ε).
Dividing through by γ, we obtain

〈y?, G(x)〉+ f(x) ≥ µ0 − ε.
This implies that L(y?) = infx∈Rd〈y?, G(x)〉+ f(x) ≥ µ0 − ε.1712

Closed cone condition for strong duality in conic optimization. Slater’s condition applied to conic1713

optimization problems translates into requiring that there is some x̄ such that b − Ax̄ ∈ int(K). Another1714

very useful strong duality condition uses topological properties of the dual cone K∗.1715

Theorem 4.31. [Closed cone condition] Consider the conic optimization primal dual pair (4.14). Suppose1716

the set {(ATy, 〈b,y〉) ∈ Rd × R : y ∈ K∗} is closed and the dual is feasible, i.e., there exists y ∈ K? such1717

that ATy = c. Then we have zero duality gap. If the optimal dual value is finite, then strong duality holds1718

in (4.14).1719

Proof. Since the dual is feasible, its optimal value is either −∞ or finite. By weak duality (Proposition 4.25),1720

in the first case we must have zero duality gap and the primal is infeasible. So we consider the case when the1721

optimal value of the dual is finite, say µ0 ∈ R. Let us label the set S := {(ATy, 〈b,y〉) : y ∈ K∗} ⊆ Rd ×R.1722

Notice that the optimal value of the dual is µ0 = inf{r ∈ R : (c, r) ∈ S}. Since S is closed, the set1723

{r ∈ R : (c, r) ∈ S} is closed because it is topologically the same as S ∩ (c × R). Therefore the infimum in1724

inf{r ∈ R : (c, r) ∈ S} is over a closed subset of the real line. Hence, (c, µ0) ∈ S and so there exists y? ∈ K?
1725

such that ATy? = c and 〈b,y?〉 = µ0.1726

NOTES: 82



Since µ0 = inf{r ∈ R : (c, r) ∈ S}, for every ε > 0, (c, µ0 − ε) 6∈ S. Therefore, there exists a separating1727

hyperplane (a, γ) ∈ Rd×R and δ ∈ R such that 〈a, ATy〉+γ ·〈b,y〉 ≤ δ for all y ∈ K?, and 〈a, c〉+γ(µ0−ε) >1728

δ. By Problem 8 from “HW for Week IX”, we may assume δ = 0. Therefore, we have1729

〈a, ATy〉+ γ · 〈b,y〉 ≤ 0 for all y ∈ K?, (4.18)

〈a, c〉+ γ(µ0 − ε) > 0 (4.19)

Substituting y? in (4.18), we obtain that 〈a, c〉+γµ0 ≤ 0, and (4.19) tells us that 〈a, c〉+γµ0 > γε. This1730

implies that γ < 0 since ε > 0. Now (4.18) can be rewritten as 〈Aa+γb,y〉 ≤ 0 for all y ∈ K? and (4.19) can1731

be rewritten as 〈a, c〉 > −γ(µ0 − ε). Dividing through both these relations by −γ > 0, and setting x = a
−γ ,1732

we obtain that 〈Ax− b,y〉 ≤ 0 for all y ∈ K? implying that Ax 4K b, and 〈x, c〉 > µ0 − ε. Thus, we have1733

a feasible solution x for the primal with value at least µ0 − ε. Since ε > 0 was chosen arbitrarily, this shows1734

that for every ε > 0, the primal has optimal value better than µ0 − ε. Therefore, the primal value must be1735

µ0 and we have zero duality gap. The existence of y? shows that we have strong duality.1736

Linear Programming strong duality. The closed cone condition for strong duality implies that linear programs1737

always enjoy strong duality when either the primal or the dual (or both) are feasible. This is because the1738

cone K = Rm+ is a polyhedral cone and also self-dual, i.e., K? = K = RM+ . Since linear transformations of1739

polyhedral cones are polyhedral (see part 5. of Problem 1 in “HW for Week V”), and hence closed, linear1740

programs always satisfy the condition in Theorem 4.31. One therefore has the following table for the possible1741

outcomes in the primal-dual linear programming pair.1742

XXXXXXXXXXPrimal
Dual

Infeasible Finite Unbounded

Infeasible Possible Impossible Possible
Finite Impossible Possible, Zero duality gap Impossible

Unbounded Possible Impossible Impossible

1743

An alternate proof of zero duality gap for linear programming follows from our results on polyhedral1744

theory. We outline it here to illustrate that linear programming duality can be approached in different1745

ways (although ultimately both proofs go back to the separating hyperplane theorem – Theorem 2.20). We1746

consider two cases:1747

Primal is infeasible. In this case, we will show that is the dual is feasible, then the dual must be1748

unbounded. Since the primal is infeasible, the polyhedron Ax ≤ b is empty. By Theorem 2.88, there exists1749

ŷ ≥ 0 such that AT ŷ = 0 and 〈b, ŷ〉 = −1. Since the dual is feasible, consider any ȳ ≥ 0 such that AT ȳ = c.1750

Now, all points of the form ȳ +λŷ are also feasible to the dual, and the corresponding value 〈b, ȳ +λŷ〉 can1751

be made to go to −∞ because 〈b, ŷ〉 = −1.1752
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Primal is feasible. If the primal is unbounded, then by weak duality, the dual must be infeasible. So let1753

us consider the case that the primal has a finite value µ0. This means that the inequality 〈c,x〉 ≤ µ0 is a1754

valid inequality for the polyhedron Ax ≤ b. By Theorem 2.85, there exists ŷ ≥ 0 such that AT ŷ = c and1755

〈b, ŷ〉 ≤ µ0. Therefore the dual has a solution ŷ whose objective value is equal to the primal value µ0. This1756

guarantees strong duality.1757

Complementary slackness. Complementary slackness is a useful necessary condition when we have1758

primal and dual optimal solutions with zero duality gap.1759

Theorem 4.32. Let f : Rd → R be convex, let K ⊆ Rm be a closed, convex cone, and let G : Rd → Rm be1760

a K-convex mapping. Let L : Rm → R be as defined in (4.9). Let x? be such that G(x?) 4K 0 and y? ∈ K?
1761

such that f(x?) = L(y?). Then 〈y?, G(x?)〉 = 0.1762

Proof. We simply observe that since G(x?) 4K 0 and y? ∈ K?, we must have 〈y?, G(x?)〉 ≤ 0. Therefore,

f(x?) ≥ f(x?) + 〈y?, G(x?)〉 ≥ inf
x∈Rd

f(x) + 〈y?, G(x)〉 = L(y?).

Since f(x?) = L(y?) by assumption, equality must hold throughout above giving us 〈y?, G(x?)〉 = 0.1763

4.3.5 Saddle point interpretation of the Lagrangian dual1764

Let us go back to the original problem (4.4) and revisit the dual function L(y). Define the function1765

L̂(x,y) := f(x) + 〈y, G(x)〉 (4.20)

which is often called the Lagrangian function associated with (4.4). A characterization of a pair of optimal1766

solutions to (4.4) and (4.10) can be obtained using saddle points of the Lagrangian function.1767

Theorem 4.33. Let f : Rd → R be convex, let K ⊆ Rm be a closed, convex cone, and let G : Rd → Rm be1768

a K-convex mapping. Let L : Rm → R be as defined in (4.9) and L̂ : Rd × Rm → R be as defined in (4.20).1769

Let x? be such that G(x?) 4K 0 and y? ∈ K?. then the following are equivalent.1770

1. L(y?) = f(x?).1771

2. L̂(x?, ŷ) ≤ L̂(x?,y?) ≤ L̂(x̂,y?), for all x̂ ∈ Rd and ŷ ∈ K?.1772

Proof. 1. =⇒ 2. Consider any x̂ ∈ Rd and ŷ ∈ K?. We now derive the following chain of inequalities:

L̂(x?, ŷ) = f(x?) + 〈ŷ, G(x?)〉
≤ f(x?) since 〈ŷ, G(x?)〉 ≤ 0 because ŷ ∈ K?, G(x?) 4K 0

= f(x?) + 〈y?, G(x?)〉 = L̂(x?,y?) since 〈y?, G(x?)〉 = 0 by Theorem 4.32
= L(y?) since L(y?) = f(x?)
= infx∈Rd f(x) + 〈y?, G(x)〉
≤ f(x̂) + 〈y?, G(x̂)〉
= L̂(x̂,y?)
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2. =⇒ 1. Since L̂(x?, ŷ) ≤ L̂(x?,y?) for all ŷ ∈ K?, we have that

L̂(x?,y?) = sup
y∈K?

L̂(x?, ŷ) = sup
y∈K?

f(x?) + 〈y, G(x?)〉 = f(x?),

where the last equality follows from the fact that 〈y, G(x?)〉 ≤ 0 for all y ∈ K? and so the supremum is
achieved for y = 0. On the other hand, since L̂(x?,y?) ≤ L̂(x̂,y?), for all x̂ ∈ Rd, we have that

L̂(x?,y?) = inf
x∈Rd

L̂(x,y?) = inf
x∈Rd

f(x) + 〈y?, G(x)〉 = L(y?).

Thus, we obtain that f(x?) = L̂(x?,y?) = L(y?).1773

Theorem 4.33 says that x? and y? are solutions for the primal problem (4.4) and dual problem (4.10)1774

respectively, if and only if (x?,y?) is a saddle point for the function L̂(x,y). This can be used to directly1775

solve (4.4) and (4.10) simultaneously by searching for saddle-points of the function L̂(x,y). This approach1776

can be useful, if one has analytical forms for f and G (with sufficient differentiable properties) so that finding1777

saddle-points is a reasonable option.1778

4.4 Cutting plane schemes1779

We now go back to the most general convex optimization (4.1). As before, we make no assumptions on f1780

and C except that we have access to first-order oracles for f and C, i.e., for any x ∈ Rd, the oracle returns1781

an element from the subdifferential ∂f(x), and if x 6∈ C then it returns a separating hyperplane.1782

The subgradient algorithm from Section 4.1 can be used to solve (4.1) if one has access to the projection1783

operator ProjC(x), which is stronger than a separation oracle. Cutting plane schemes are a class of algorithms1784

that work with just a separation oracle. Moreover, the number of oracle calls is is quite different from1785

the number of oracle calls made by the subgradient algorithm: on the one hand, they typically exhibit a1786

logarithmic dependence of ln(MR
ε ) on the initial data M,R and error guarantee ε as opposed to the quadratic1787

dependence M2R2

ε2 of the subgradient algorithm; on the other other, cutting plane schemes have a polynomial1788

dependence on the dimension d of the problem (typically of the order of d2), and such a dependence does1789

not exist for the subgradient algorithm – see Remark 4.14.1790

We will present the algorithm and the analysis for the situation when C is compact and full-dimensional.1791

Hence the minimizer x? exists for (4.1) since f is convex, and therefore, continuous by Theorem 3.21. There1792

are ways to get around this assumption, but we will ignore this complication in this write-up.1793

General cutting plane scheme1794

1. Choose any E0 ⊇ C.1795

2. For i = 0, 1, 2, . . ., do1796
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(a) Choose xi ∈ Ei.1797

(b) Call the separation oracle for C with xi as input.1798

Case 1: xi ∈ C. Call the first order oracle for f to get some si ∈ ∂f(xi).1799

Case 2: xi 6∈ C. Set si to be the normal vector of some separating hyperplane for xi from C.1800

(c) Set Ei+1 ⊇ Ei ∩ {x ∈ Rd : 〈si,x〉 ≤ 〈si,xi〉}.1801

The points x0,x1, . . . will be called the iterates of the Cutting Plane scheme.1802

Remark 4.34. The above general scheme actually defines a family of algorithms. We have two choices to1803

make to get a particular algorithm out of this scheme. First, there must be a strategy/procedure to choose1804

xi ∈ Ei in step 2(a) in every iteration. Second, there should be a strategy to define Ei+1 as a superset of1805

Ei ∩ {x ∈ Rd : 〈si,x〉 ≤ 〈si,xi〉} in step 2(c) of the scheme. Depending on what these two strategies are, we1806

get different variants of the general cutting plane scheme. We will look at two variants below: the center of1807

gravity method and the ellipsoid method.1808

Technically, we also have to make a choice for E0 in Step 1, but this is usually given as part of the input1809

to the problem: E0 is usually large ball or polytope containing C that is provided or known at the start.1810

We now start our analysis of cutting plane schemes. We introduce a useful notation to denote the1811

polyhedron defined by the halfspaces obtained during the iterations of the cutting plane scheme.1812

Definition 4.35. Let z1, . . . , zk ⊆ Rd and let s1, . . . , sk be the corresponding outputs of the first-order
oracle, i.e., si ∈ ∂f(zi) if zi ∈ C, and si is the normal vector of a separating hyperplane if zi 6∈ C. Define

G(z1, . . . , zk) := {x ∈ Rd : 〈si,x〉 ≤ 〈si, zi〉 i = 1, . . . , k}.

This polyhedron will be referred to as the gradient polyhedron of z1, . . . , zk. The name is a bit of a misnomer,1813

because we are considering general f , so we may have no gradients, and also some of the halfspaces could1814

correspond to separating hyperplanes which have nothing to do with gradients. Even so we stick with this1815

terminology.1816

Definition 4.36. Let x0,x1, . . . be the iterates of a cutting plane scheme. For any iteration t ≥ 0, we define
h(t) := |C ∩ {x0, . . . ,xt}|, i.e., h(t) is the number of feasible iterates until iteration t. We also define

St = C ∩G(x0, . . . ,xt).

As we shall see below, the volume of St will be central in measuring our progress towards the optimal1817

solution. We first observe in the next lemma that St can be describe as the intersection of C and the gradient1818

polyhedron of only the feasible iterates.1819

Lemma 4.37. Let x0,x1, . . . be the iterates of a cutting plane scheme. Let the feasible iterates be denoted1820

by {xi1 , . . . ,xih(t)} = C ∩ {x0, . . . ,xt}, with 0 ≤ i1 ≤ i2 ≤ . . . ≤ ih(t). Then St = C ∩G(xi1 , . . . ,xih(t)).1821
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Proof. Let Xt = {x0, . . . ,xt}. We derive the following relations.

St = C ∩G(x0, . . . ,xt)
= C ∩G(Xt \ {xi1 , . . . ,xih(t)}) ∩G(xi1 , . . . ,xih(t))
= C ∩G(xi1 , . . . ,xih(t)),

where the last inequality follows since C ⊆ G(Xt \ {xi1 , . . . ,xih(t)}) because each z ∈ Xt \ {xi1 , . . . ,xih(t)}1822

is infeasible, i.e., z 6∈ C, and therefore, the corresponding vector s is a separating hyperplane for z and C.1823

Thus, C ⊆ {x ∈ Rd : 〈s,x〉 ≤ 〈s, z〉}.1824

Since our analysis will involve the volume of St, while our algorithm only works with the sets Et, we need1825

to establish a definite relationship between these two sets.1826

Lemma 4.38. Let x0,x1, . . . be the iterates of a cutting plane scheme. Then Et+1 ⊇ St for all t ≥ 0.1827

Proof. By definition Ei+1 ⊇ Ei ∩ {x ∈ Rd : 〈si,x〉 ≤ 〈si,xi〉} for all i = 0, . . . , t. By putting all these1828

relationships together, we obtain that1829

Et+1 ⊇ E0 ∩G(x0, . . . ,xt) ⊇ C ∩G(x0, . . . ,xt) = St, (4.21)

where the second containment follows from the assumption that E0 ⊇ C.1830

We now state our main structural result for the analysis of cutting plane schemes. We use dist(x, X) to1831

denote the distance of x ∈ Rd from any subset X ⊆ Rd, i.e., dist(x, X) := infy∈X ‖x− y‖.1832

Theorem 4.39. Let f : Rd → R be a convex function and let C be a compact, convex set. Let x? be the
minimizer for (4.1). Let x0,x1, . . . be the iterates of any cutting plane scheme. Let the feasible iterates be
denoted by {xi1 , . . . ,xih(t)} = C ∩ {x0, . . . ,xt}, with 0 ≤ i1 ≤ i2 ≤ . . . ≤ ih(t). Define

vmin(t) := min
j=i1,...,ih(t)

dist(x?, H(sj , 〈sj ,xj〉)),

i.e., vmin(t) is the minimum distance of x? from the hyperplanes {x : 〈sj ,x〉 = 〈sj ,xj〉}, j = i1, . . . ih(t). Let1833

D be diameter of C, i.e., D = maxx,y∈C ‖x− y‖. Then the following are all true.1834

1. For any t ≥ 0, if vol(Et+1) < vol(C) then h(t) > 0, i.e., there is at least one feasible iterate.1835

2. For any t ≥ 0 such that h(t) > 0, vmin(t) ≤ D
(vol(St)

vol(C)

) 1
d ≤ D

(vol(Et+1)
vol(C)

) 1
d for all t ≥ 0.1836

3. For any t ≥ 0 such that h(t) > 0, minj=i1,...ih(t)
f(xj) ≤ f(x?) +Mvmin(t) ≤ f(x?) +MD

(vol(Et+1)
vol(C)

) 1
d ,1837

where M = L(B2(x?, vmin)) is a Lipschitz constant for f over B2(x?, vmin) (see Theorem 3.21). This1838

provides a bound on the value of the best feasible point seen upto iteration t, in comparison to the1839

optimal value f(x?).1840
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Theorem 4.39 shows that if we can ensure vol(Et)→ 0 as t→∞, then we have a convergent algorithm.1841

Proof of Theorem 4.39. 1. We prove the contrapositive. If h(t) = 0, then all iterates upto iteration t1842

are infeasible, i.e., xi 6∈ C for all i = 1, . . . , t. This implies that all the vector si are normal vectors1843

for separating hyperplanes. So C ⊆ G(x0, . . . ,xt). Since C ⊆ E0, this implies that C = E0 ∩ C ⊆1844

E0 ∩ G(x0, . . . ,xt) ⊆ Et+1, where the last containment follows from the first containment in (4.21).1845

Therefore, vol(C) ≤ vol(Et+1).1846

2. Let α = vmin(t)
D . Since D is the diameter of C, we must have C ⊆ B2(x?, D). Thus,

α(C − x?) + x? ⊆ B2(x?, αD) = B2(x?, vmin(t)) ⊆ G(xi1 , . . . ,xih(t)),

where the first equality follows from the definition of α and the final containment follows the definition1847

of vmin(t). Since x? ∈ C and C is convex, we know that α(C−x?)+x? = αC+(1−α)x? ⊆ C. Therefore,1848

α(C − x?) + x? = C ∩ (α(C − x?) + x?) ⊆ C ∩G(xi1 , . . . ,xih(t)) = St, where the last equality follows1849

from Lemma 4.37. This implies that αd vol(C) = vol(α(C−x?)) ≤ vol(St). Rearranging and using the1850

definition of α, we obtain that vmin(t) ≤ D
(vol(St)

vol(C)

) 1
d . By Lemma 4.38, D

(vol(St)
vol(C)

) 1
d ≤ D

(vol(Et+1)
vol(C)

) 1
d .1851

3. It suffices to prove the first inequality; the second inequality follows from part 1. above. Let imin ∈
{i1, i2, . . . , ih(t)} be such that vmin(t) = dist(x?, H(si

min

, 〈simin

,xi
min〉)). DenoteH := H(si

min

, 〈simin

,xi
min〉)

passing through xi
min

, orthogonal to si
min

. Let x̄ be the point on H closest to x?. Using the Lipschitz
constant M , we obtain that f(x̄) ≤ f(x?) + Mvmin(t); see Figure 3.. Finally, since si

min ∈ ∂f(xi
min

),

we must have that f(x̄) ≥ f(xi
min

) + 〈simin

, x̄ − xi
min〉 = f(xi

min

), since x̄ ∈ H implying that

〈simin

, x̄− xi
min〉 = 0. Therefore, we obtain

min
j=i1,...ih(t)

f(xj) ≤ f(xi
min

) ≤ f(x̄) ≤ f(x?) +Mvmin(t).

1852

We now analyze two instantiations of the cutting plane scheme with concrete strategies to choose xi and1853

Ei+1 in each iteration i.1854

Center of Gravity Method. The first one is called the center of gravity method.1855

Definition 4.40. The center of gravity for any compact set X ⊆ Rd with non-zero volume is defined as∫
X

xdx

vol(X)
.
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An important property of the center gravity of compact, convex sets was established by Grünbaum [4].1856

Theorem 4.41. Let C ⊆ Rd be a compact, convex set with center of gravity x̄. Then for every hyperplane
H such that x ∈ H,

1

e
≤
(

d

d+ 1

)d
≤ vol(H+ ∩ C)

vol(C)
≤ 1−

(
d

d+ 1

)d
≤ 1− 1

e
,

where H+ is a halfspace with boundary H.1857

Theorem 4.41 follows from the proof of Theorem 2 in [4] and will not be repeated here.1858

In the center of gravity method, xi is chosen as the center of gravity of Ei in Step 2(a) of the General cutting1859

plane scheme, and Ei+1 is set to be equal to Ei ∩ {x ∈ Rd : 〈si,x〉 ≤ 〈si,xi〉} in Step 2(c) in the General1860

cutting plane scheme. Theorem 4.41 then implies the following. Sometimes, the center of gravity method1861

assumes that E0 = C, where the central assumption is that one can compute the center of gravity of C and1862

any subset of it.1863

Theorem 4.42. In the center of gravity method, if h(t) > 0 for some iteration t ≥ 0, then

min
j=i1,...ih(t)

f(xj) ≤ f(x?) +MD(1− 1

e
)t/d(

vol(E0)

vol(C)
)1/d,

where D is the diameter of C and M is a Lipschitz constant for f over B2(x?, D).1864

In particular, if E0 = C, then minj=i1,...ih(t)
f(xj) ≤ f(x?) +MD(1− 1

e )t/d.1865

Proof. Follows from Theorem 4.39 part 3., and the fact that B(x?, vmin) ⊆ B(x?, D) implying that M is a1866

Lipschitz constant for f over B(x?, vmin), and vol(Et+1) ≤ (1− 1
e )t vol(E0) by Theorem 4.41.1867

By setting the error term MD(1 − 1
e )t/d(vol(E0)

vol(C) )1/d less than equal to ε in Theorem 4.42, the following1868

is an immediate consequence.1869

Corollary 4.43. For any ε > 0, after O(d ln(MD
ε ) + ln

(vol(E0)
vol(C)

)
) iterations of the center of gravity method,

min
j=i1,...ih(t)

f(xj) ≤ f(x?) + ε.

In particular, if E0 = C, then one needs O(d ln(MD
ε )) iterations.1870
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Ellipsoid method. The ellipsoid method is a cutting plane scheme where E0 is assumed to be a large1871

ball with radius R around a known point x0 (typically x0 = 0) that is guaranteed to contain C. At1872

every iteration i, Ei is maintained to be an ellipsoid and in Step 2(a), xi is chosen to be the center of1873

Ei. In Step 2(c), Ei+1 is set to be an ellipsoid that contains Ei ∩ {x ∈ Rd : 〈si,x〉 ≤ 〈si,xi〉}, such that1874

vol(Ei+1) ≤ (1− 1
d2+1 )d/2 vol(Ei). The technical bulk of the analysis goes into showing that such an ellipsoid1875

Ei+1 always exists.1876

Definition 4.44. Recall from Definition 2.2 that an ellipsoid is the unit ball associated with the norm
induced by a positive definite matrix, i.e., E = {x ∈ Rd : xTAx ≤ 1} for some positive definite matrix
A. First, we need to also consider translated ellipsoids so that the center is not 0 anymore. Secondly, for
computational reasons involving inverses of matrices, we will actually define the following family of objects,
which are just translated ellipsoids, just written in a different way. Given a positive definite matrix H ∈ Rd×d
and a point y ∈ Rd, we define

E(H,y) := {x ∈ Rd : (x− y)TH−1(x− y) ≤ 1}.

The next proposition follows from unwrapping the definition. It shows that ellipsoids are simply the1877

image of the Euclidean unit norm ball under an invertible linear transformation.1878

Proposition 4.45. Let H ∈ Rd×d be a positive definite matrix and let H−1 = BTB for some invertible1879

matrix B ∈ Rd×d. Then E(H,y) = y + B−1(B2(0, 1)). Thus, vol(E(H,y)) = det(B−1) vol(B2(0, 1)) =1880 √
det(H) vol(B2(0, 1)).1881

In the following, we will utilize the following relation for any w, z ∈ Rd and A ∈ Rd×d1882

(w + z)TA(w + z) = wTAw + 2wTAz + zTAz. (4.22)

Theorem 4.46. Let H ∈ Rd×d and y ∈ Rd. Let s ∈ Rd and let E+ = E(H,y) ∩H−(s, 〈s,y〉). Define

y+ = y − 1
d+1 · Hs√

sTHs

H+ = d2

d2−1 (H − 2
d+1 · HssTH

sTHs
).

Then E+ ⊆ E(H+,y+) and vol(E(H+,y+)) ≤ (1− 1
(d+1)2 )d/2 vol(E(H,y)).1883

Proof. We first prove E+ ⊆ E(H+,y+). Consider any x ∈ E+ = E(H,y)∩H−(s, 〈s,y〉). To ease notational1884

burden, we denote G = H−1 and G+ = H−1
+ . A direct calculation shows that G+ = d2−1

d2 (G+ 2
d−1 · ssT

sTHs
).1885

Thus, x satisfies1886

(x− y)TG(x− y) ≤ 1 (4.23)

〈s,x− y〉 ≤ 0 (4.24)
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We now verify that

(x− y+)TG+(x− y+) = (x− y + 1
d+1 · Hs√

sTHs
)TG+(x− y + 1

d+1 · Hs√
sTHs

)

= (x− y)TG+(x− y) + 2
d+1 (x− y)TG+( Hs√

sTHs
) + ( 1

d+1 )2 sTHTG+Hs
sTHs

,

where we use (4.22). Let us analyze the three terms separately. The first term simplifies to1887

(x− y)TG+(x− y) = (x− y)T (d
2−1
d2 (G+ 2

d−1 · ssT

sTHs
))(x− y)

= d2−1
d2

(
(x− y)TG(x− y) + 2

d−1
(sT (x−y))2

sTHs

)
The second term simplifies to1888

2
d+1 (x− y)TG+( Hs√

sTHs
) = 2

d+1 (x− y)T (d
2−1
d2 (G+ 2

d−1 · ssT

sTHs
))( Hs√

sTHs
)

= d2−1
d2 · 2

d+1

( sT (x−y)√
sTHs

+ 2
d−1 ·

(x−y)T ssTHs

sTHs·
√
sTHs

)
= d2−1

d2 · 2
d+1

( sT (x−y)√
sTHs

+ 2
d−1 ·

(x−y)T s√
sTHs

)
= d2−1

d2 · 2
d−1

( sT (x−y)√
sTHs

)
The third term simplifies to1889

( 1
d+1 )2 sTHTG+Hs

sTHs
= ( 1

d+1 )2 sTH( d
2−1

d2 (G+ 2
d−1 ·

ssT

sTHs
))Hs

sTHs

= d2−1
d2 · ( 1

d+1 )2
( sTHs+ 2

d−1 (sTHs)

sTHs

)
= d2−1

d2 ( 1
d2−1 ),

Putting all of it together, we obtain that1890

(x−y+)TG+(x−y+) =
d2 − 1

d2

(
(x−y)TG(x−y)+

2

d− 1

(sT (x− y))2

sTHs
+

2

d− 1

(sT (x− y)√
sTHs

)
+

1

d2 − 1

)
(4.25)

We now argue that (sT (x−y))2

sTHs
+ sT (x−y)√

sTHs
= sT (x−y)

sTHs
(
√

sTHs + sT (x − y)) ≤ 0. Since sT (x − y) ≤ 0 by1891

(4.24), it suffices to show that
√

sTHs + sT (x− y) ≥ 0, or equivalently, that |sT (x− y)| ≤
√

sTHs.1892

Claim 4. |sT (x− y)| ≤
√

sTHs.1893

Proof of Claim. Let the eigendecomposition of H be given as H = SΛST , where S is the orthonormal matrix
which has the eigenvectors of H as columns, and Λ is a diagonal matrix with the corresponding eigenvalues.
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Then H−1 = SΛ−1ST = G. Now,

|sT (x− y)| = |sTSΛ
1
2 Λ−

1
2ST (x− y)|

= | 〈Λ 1
2ST s,Λ−

1
2ST (x− y)〉 |

≤ ‖Λ 1
2ST s‖2‖Λ−

1
2ST (x− y)‖2

=
√

(Λ
1
2ST s)T (Λ

1
2ST s)

√
(Λ−

1
2ST (x− y))T (Λ−

1
2ST (x− y))

=
√

sTSΛ
1
2 Λ

1
2ST s

√
(x− y)TSΛ−

1
2 Λ−

1
2ST (x− y)

=
√

sTHs
√

(x− y)TG(x− y)

≤
√

sTHs,

where there first inequality is the Cauchy-Schwarz inequality, and the last inequality follows from (4.23).1894

This claim, together with (4.25), implies that

(x− y+)TG+(x− y+) ≤ d2−1
d2

(
(x− y)TG(x− y) + 1

d2−1

)
≤ d2−1

d2

(
1 + 1

d2−1

)
= 1,

where the second inequality follows from (4.23).1895

We now prove the volume claim. Let H = BTB for some invertible matrix B. We use Id to denote the
d× didentity matrix. By Proposition 4.45,

vol(E(H+,y+))

vol(E(H,y)) =
√

det(H+)
det(H)

=

√
det( d2

d2−1
(H− 2

d+1 ·
HssTH

sTHs
))

det(H)

= ( d2

d2−1 )
d
2

√
det(H− 2

d+1 ·
HssTH

sTHs
)

det(H)

= ( d2

d2−1 )
d
2

√
det(BTB− 2

d+1 ·
BTBssTBTB

sTBTBs
)

det(BTB)

= ( d2

d2−1 )
d
2

√
det(BT (Id− 2

d+1 ·
BssTBT

sTBTBs
)B)

det(BT ) det(B)

= ( d2

d2−1 )
d
2

√
det(BT ) det(Id− 2

d+1 ·
BssTBT

sTBTBs
) det(B)

det(BT ) det(B)

= ( d2

d2−1 )
d
2

√
det(Id − 2

d+1 · BssTBT

sTBTBs
)

= ( d2

d2−1 )
d
2 · (1− 2

d+1 )
1
2 ,

where the last equality follows from the fact that the matrix BssTBT

sTBTBs
= aaT

‖a‖2 with a = Bs, is a rank one

positive semidefinite matrix with eigenvalue 1 with multiplicity 1, and eigenvalue 0 with multiplicity d− 1.
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Now finally we observe that

( d2

d2−1 )
d
2 · (1− 2

d+1 )
1
2 = ( d2

d2−1 · (1− 2
d+1 )

1
d )

d
2

≤ ( d2

d2−1 · (1− 2
d(d+1) ))

d
2

=
( d2(d2+d−2)
d(d+1)(d2−1)

) d
2

= (1− 1
(d+1)2 )d/2

This completes the proof.1896

This can be used to give the guarantee of the ellipsoid method as follows.1897

Theorem 4.47. Using the ellipsoid method with E0 = B(x0, R), if h(t) > 0 for some iteration t ≥ 0, then

min
j=i1,...ih(t)

f(xj) ≤ f(x?) +MR

(
1− 1

(d+ 1)2

)t/2
·
(

vol(E0)

vol(C)

)1/d

≤MRe
− t

2(d+1)2 ·
(

vol(E0)

vol(C)

)1/d

,

where M is a Lipschitz constant for f over B2(x0, 2R).1898

Proof. The first inequality follows from Theorem 4.39 part 3., and the fact that B(x?, vmin) ⊆ B(x0, 2R)1899

implying that M is a Lipschitz constant for f over B(x?, vmin), and vol(Et+1) ≤ (1 − 1
e )t vol(E0) by Theo-1900

rem 4.46. The second inequality follows from the general inequality that (1 + x) ≤ ex for all x ∈ R.1901

By setting the error term MRe
− t

2(d+1)2 ·
(

vol(E0)
vol(C)

)1/d

less than equal to ε in Theorem 4.47, the following1902

is an immediate consequence.1903

Corollary 4.48. For any ε > 0, after 2((d + 1)2 ln(MR
ε ) + (d+1)2

d ln
(vol(E0)

vol(C)

)
) iterations of the ellipsoid

method,
min

j=i1,...ih(t)

f(xj) ≤ f(x?) + ε.

In particular, if there exists ρ > 0 such that B2(z, ρ) ⊆ C for some z ∈ C, then after 2(d + 1)2 ln(MR2

ερ )1904

iterations of the ellipsoid method, minj=i1,...ih(t)
f(xj) ≤ f(x?) + ε.1905

Proof. We simply use the fact that vol(B2(z, λ)) = λd vol(B2(0, 1)) for any z ∈ Rd and λ ≥ 0.1906

Because of the logarithmic dependence on the data (M,R, ρ) and the error guarantee ε, and the quadratic1907

dependence on the dimension d, the ellipsoid method is said to have polynomial running time for convex1908

optimization.1909
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