XDATA PI meeting

Spectral Clustering for Divide-and-Conquer Graph Matching

Carey E. Priebe

Department of Applied Mathematics & Statistics Johns Hopkins University, Baltimore, MD, USA

January 13-14, 2015

Abstract

We present a parallelized bijective graph matching algorithm that leverages seeds and is designed to match very large graphs. Our algorithm combines spectral graph embedding with existing state-of-the-art seeded graph matching procedures. We justify our approach by proving that modestly correlated, large stochastic block model random graphs are correctly matched utilizing very few seeds through our divide-and-conquer procedure. We also demonstrate the effectiveness of our approach in matching very large graphs in simulated and real data examples.

🔖 V. Lvzinski. D.L. Sussman, D.E. Fishkind, H. Pao, L. Chen, J.T. Vogelstein, Y. Park, C.E. Priebe, "Spectral Clustering for Divide-and-Conquer Graph Matching," Parallel Computing, accepted for publication, 2015.

V. Lvzinski

Background

Given two graphs, $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, the Graph Matching Problem (GMP) seeks an alignment between the vertex sets V_1 and V_2 that best preserves structure across the graphs. In *bijective* graph matching, we further assume $|V_1| = |V_2| = n$, and the alignment sought by GMP is a bijection between V_1 and V_2 .

Graph Matching Problem

Find a bijection $\psi: V_1 \rightarrow V_2$ minimizing the quantity

$$\left|\left\{ (i,j) \in V_1 \times V_1 \text{ s.t. } [i \sim_{G_1} j, \psi(i) \not\approx_{G_2} \psi(j)] \text{ or } [i \not\approx_{G_1} j, \psi(i) \sim_{G_2} \psi(j)] \right\}\right|, \tag{1}$$

i.e. the problem seeks to minimize the number of edge disagreements between G_2 and " $\psi(G_1)$ ". Equivalently stated, if A and B are the respective adjacency matrices of G_1 and G_2 , then this problem seeks to minimize $||A - PBP^T||_F^2$, over all permutation matrices $P \in \Pi(n) := \{n \times n \text{ permutation matrices}\}$, with $|| \cdot ||_F$ the matrix Frobenius norm.

Background

In the seeded graph matching problem (SGMP), we further assume the presence of a latent alignment ϕ between the vertex sets of G_1 and G_2 . Our task is to then efficiently leverage the information in a partial observation of the latent alignment, i.e. a *seeding*, to estimate the remaining latent alignment.

Seeded Graph Matching Problem

Given subsets of the vertices $S_1 \subset V_1$ and $S_2 \subset V_2$ called *seeds* with $|S_1| = |S_2| = s$ and a bijective seeding function $\phi_S : S_1 \to S_2$, the task is to use ϕ_S to estimate ϕ by finding the bijection extending ϕ_S which minimizes (1).

Divide-and-Conquer Seeded Graph Matching

$$\Omega(C_{i,1}, G_1) \xleftarrow{SGM} \Omega(C_{i,2}, G_2) \Rightarrow \psi^{(i)}$$
$$\psi = \bigoplus_{i=1}^k \psi^{(i)}$$

Theorems

Theorem 1: Perfect Clustering

[EJS2014]

Theorem 2: Seeded Graph Matching

[JMLR2014]

Theorem 3: Subspace Alignment

[PARCO2015]

Vince Lyzinski, Daniel Sussman, Minh Tang, Avanti Athreya, Carey E. Priebe, "Perfect Clustering for Stochastic Blockmodel Graphs via Adjacency Spectral Embedding," *Electronic Journal of Statistics*, accepted for publication, 2014.

Vince Lyzinski, Donniell E. Fishkind, and Carey E. Priebe, "Seeded graph matching for correlated Erdos-Renyi graphs," *Journal of Machine Learning Research*, vol. 15, no. Nov, pp. 3513-3540, 2014.

V. Lyzinski, D.L. Sussman, D.E. Fishkind, H. Pao, L. Chen, J.T. Vogelstein, Y. Park, C.E. Priebe, "Spectral Clustering for Divide-and-Conquer Graph Matching," *Parallel Computing*, accepted for publication, 2015.

Fraction of unseeded vertices correctly matched across two K = 900 block, $\vec{n} = 30 \cdot \vec{1}$, d = 10 dimensional ρ -correlated SBM's with s seeds drawn uniformly at random from the 27000 vertices.

The fraction of the unseeded vertices correctly matched for graphs 8 and 29 (within-subject) and for graphs 1 and 8 (across-subject). For the 8–29 pair, n = 20,541, d = 30. For the 1–8 pair, n = 18,694, d = 30, we cluster using *k*-means, reclustering any clusters of size ≥ 800 . We plot the fraction of the vertices correctly matched in each of the two experiments for number of seeds s = 200, 1000, 2000, and 5000.

Yogi Berra:

"In theory there is no difference between theory and practice. In practice, there is."

Leopold Kronecker to Hermann von Helmholtz (1888):

"The wealth of your practical experience with sane and interesting problems will give to mathematics a new direction and a new impetus."

Kronecker

Helmholtz