Spectral Clustering for
 Divide-and-Conquer Graph Matching

Carey E. Priebe

Department of Applied Mathematics \& Statistics
Johns Hopkins University, Baltimore, MD, USA
January 13-14, 2015

Abstract

We present a parallelized bijective graph matching algorithm that leverages seeds and is designed to match very large graphs. Our algorithm combines spectral graph embedding with existing state-of-the-art seeded graph matching procedures. We justify our approach by proving that modestly correlated, large stochastic block model random graphs are correctly matched utilizing very few seeds through our divide-and-conquer procedure. We also demonstrate the effectiveness of our approach in matching very large graphs in simulated and real data examples.

V. Lyzinski, D.L. Sussman, D.E. Fishkind, H. Pao, L. Chen,
J.T. Vogelstein, Y. Park, C.E. Priebe,
"Spectral Clustering for Divide-and-Conquer Graph Matching,"
Parallel Computing, accepted for publication, 2015.

V. Lyzinski

Background

Given two graphs, $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, the Graph Matching Problem (GMP) seeks an alignment between the vertex sets V_{1} and V_{2} that best preserves structure across the graphs. In bijective graph matching, we further assume $\left|V_{1}\right|=\left|V_{2}\right|=n$, and the alignment sought by GMP is a bijection between V_{1} and V_{2}.

Graph Matching Problem

Find a bijection $\psi: V_{1} \rightarrow V_{2}$ minimizing the quantity

$$
\begin{equation*}
\mid\left\{(i, j) \in V_{1} \times V_{1} \text { s.t. }\left[i \sim_{G_{1}} j, \psi(i) \not{\nsim G_{2}} \psi(j)\right] \text { or }\left[i \varkappa_{G_{1}} j, \psi(i) \sim_{G_{2}} \psi(j)\right]\right\} \mid \text {, } \tag{1}
\end{equation*}
$$

i.e. the problem seeks to minimize the number of edge disagreements between G_{2} and " $\psi\left(G_{1}\right)$ ". Equivalently stated, if A and B are the respective adjacency matrices of G_{1} and G_{2}, then this problem seeks to minimize $\left\|A-P B P^{T}\right\|_{F}^{2}$, over all permutation matrices $P \in \Pi(n):=\{n \times n$ permutation matrices $\}$, with $\|\cdot\|_{F}$ the matrix Frobenius norm.

Background

In the seeded graph matching problem (SGMP), we further assume the presence of a latent alignment ϕ between the vertex sets of G_{1} and G_{2}. Our task is to then efficiently leverage the information in a partial observation of the latent alignment, i.e. a seeding, to estimate the remaining latent alignment.

Seeded Graph Matching Problem

Given subsets of the vertices $S_{1} \subset V_{1}$ and $S_{2} \subset V_{2}$ called seeds with $\left|S_{1}\right|=\left|S_{2}\right|=s$ and a bijective seeding function $\phi_{S}: S_{1} \rightarrow S_{2}$, the task is to use ϕ_{S} to estimate ϕ by finding the bijection extending ϕ_{S} which minimizes (1).

Divide-and-Conquer Seeded Graph Matching

Theorem 1: Perfect Clustering
 [EJS2014]

Theorem 2: Seeded Graph Matching

[JMLR2014]

Theorem 3: Subspace Alignment

[PARCO2015]

Vince Lyzinski, Daniel Sussman, Minh Tang, Avanti Athreya, Carey E. Priebe,
"Perfect Clustering for Stochastic Blockmodel Graphs via Adjacency Spectral Embedding," Electronic Journal of Statistics, accepted for publication, 2014.

Vince Lyzinski, Donniell E. Fishkind, and Carey E. Priebe,
"Seeded graph matching for correlated Erdos-Renyi graphs," Journal of Machine Learning Research, vol. 15, no. Nov, pp. 3513-3540, 2014.
V. Lyzinski, D.L. Sussman, D.E. Fishkind, H. Pao, L. Chen, J.T. Vogelstein, Y. Park, C.E. Priebe,
"Spectral Clustering for Divide-and-Conquer Graph Matching," Parallel Computing, accepted for publication, 2015.

Fraction of unseeded vertices correctly matched across two $K=900$ block, $\vec{n}=30 \cdot \overrightarrow{1}, d=10$ dimensional ρ-correlated SBM's with s seeds drawn uniformly at random from the 27000 vertices.

The fraction of the unseeded vertices correctly matched for graphs 8 and 29 (within-subject) and for graphs 1 and 8 (across-subject). For the $8-29$ pair, $n=20,541, d=30$. For the $1-8$ pair, $n=18,694, d=30$, we cluster using k-means, reclustering any clusters of size $\geqslant 800$. We plot the fraction of the vertices correctly matched in each of the two experiments for number of seeds $s=200,1000,2000$, and 5000 .

Yogi Berra:
"In theory there is no difference between theory and practice.
In practice, there is."

Leopold Kronecker to Hermann von Helmholtz (1888):
"The wealth of your practical experience with sane and interesting problems will give to mathematics a new direction and a new impetus."

Kronecker

Helmholtz

