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Introduction

Time Series of Attributed Graphs

time

1 / 1Anomaly Detection in 
Time Series of Attributed Graphs

h: Ξ

Fusion and Inference from 
Multiple and Massive Disparate Data Sources

hV : Ξ→ KV = {red, orange}

hE : Ξ→ KE = {green, blue}

The map h provides a time series of (vertex- and edge-attributed)
graphs

{Gt} = {G(Ξt, h)} = {(Vt,Et)}
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Motivation

Us:

C.E. Priebe, J.M. Conroy, D.J. Marchette, Y. Park
“Scan Statistics on Enron Graphs”, Computational & Mathematical
Organization Theory, Vol 11, No 3, pp 229-247, 2005

Them:

X. Wan, J. Janssen, N. Kalyaniwalla and E. Milios,
“Statistical analysis of dynamic graphs”, Proceedings of AISB06:
Adaptation in Artificial and Biological Systems, v3, pp.176-179,
2006.

X. Wan, N. Kalyaniwalla,
“Capturing causality in communications graphs”, DIMACS/DyDAn
Workshop on Computational Methods for Dynamic Interaction
Networks, 2007.
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A Latent Process Model
For Time Series of Attributed Graphs

Time Series of Attributed Graphs
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N.H. Lee and C.E. Priebe,
“A Latent Process Model for Time Series of Attributed Random Graphs”, Statistical Inference for
Stochastic Processes, Vol. 14, No. 3, pp. 231-253, 2011.
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Lee & Priebe (SISP, 2011)
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Scan Statistics

“moving window analysis” [1922 R.A. Fisher, 1965 J. Naus]:

to scan a small “window” (scan region) over data, calculating
some locality statistic for each window; e.g.,

• number of events for a point pattern,

• average pixel value for an image.

scan statistic ≡ maximum of locality statistics:

If maximum of observed locality statistics is large, then the
inference can be made that
there exists a subregion of excessive activity =⇒ detection!
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Scan Statistics on Graphs

Let G = (V, E) be a graph.

(kth) neighborhood of v: Nk[v;G] = {w ∈ V : d(v,w) 6 k}, k > 0,

(kth) scan region of v: Ω(Nk[v;G]),

(kth) locality statistic of v: Ψk(v;G) = |E(Ω(Nk[v;G]))|,

(kth) scan statistic of G: Mk(G) = max
v∈V(G)

Ψk(v;G).

“Maximum activity in k-neighborhood”

C.E. Priebe, J.M. Conroy, D.J. Marchette, Y. Park
“Scan Statistics on Enron Graphs”, Computational & Mathematical Organization Theory, Vol 11, No 3, pp
229-247, 2005
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Example of Scan Statistics
|V| = 11, |E| = 15, Ψk(v;G) = |E(Ω(Nk[v;G]))|

a

b c

d e f

g h i jk

a

b cb c

d e f

g h k i j

k E(Ω(Nk[a;G])) Ψk(a)

0 	 2
1 	+	 3
2 	+	+	 7
3 	+	+	+	 15

d Ψ1 Ψ2 Ψ3

a 2 3 7 15
b 4 5 14 15
c 3 4 8 15
d 2 2 8 14
e 5 7 15 15
f 3 3 12 15
g 2 2 7 14
h 3 4 8 15
i 2 3 7 15
j 1 1 3 12
k 3 5 10 15

11 / 27



Introduction Definitions Theory & Simulation Conclusion

Scan Statistics and Time Series

Let {Gt}, t = 1, . . . , tmax, be a time series of graphs.

(kth) scan region: Ω(Nk(v;Gt)).

(kth) locality statistic: Ψk(v;Gt) = |E(Ω(Nk(v;Gt)))|.

(kth) scan statistic: Mk(Gt) = max
v∈V(Gt)

Ψk(v;Gt).
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Us vs Them

Us:

Ψk
t;t ′(v) = |E(Ω(Nk[v; Gt ′ ]; Gt ′))|

Them:

Φk
t;t ′(v) = |E(Ω(Nk[v; Gt]; Gt ′))|

t ′ 6 t
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Normalization
Time Series of Attributed Graphs

time
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vertex normalization:

J̃k
t,τ(v) =


Jk
t,t(v) τ = 0
Jk
t,t(v) − µ̂

k
t,τ(v)

max(σ̂k
t,τ(v), 1)

τ > 0

µ̂k
t,τ(v) = 1

τ

∑t′=t−1
t′=t−τ Jk

t,t′(v)

σ̂k
t,τ(v) =

√
1

τ− 1
∑t′=t−1

t′=t−τ (Jk
t,t′(v)− µ̂k

t,τ(v))2
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Us vs Them
Us:

Ψk
t;t ′(v) = |E(Ω(Nk[v; Gt ′ ]; Gt ′))|

Them:

Φk
t;t ′(v) = |E(Ω(Nk[v; Gt]; Gt ′))|

t ′ 6 t

µ̂k
t,τ(v) =

1
τ

t ′=t−1∑
t ′=t−τ

Jk
t,t ′(v)
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Normalization
τ = 1

t = t∗ − 1

a

b c

d e f

g h i jk

e

b

f

h k ih k i

b c

d f

jg

a

t = t∗

a

b c

d e f

g h i jk

e

b

f

h k ih k i

b c

d f

jg

a

Jk
t∗,t∗(e) µ̂k

t∗,τ(e) J̃k
t∗,τ(e)

k = 0 k = 1 k = 0 k = 1 k = 0 k = 1

us 5 7 3 3 2 4
them 5 7 2 4 3 3

16 / 27



Introduction Definitions Theory & Simulation Conclusion

Normalization
Time Series of Attributed Graphs

time

1 / 1

temporal normalization:

Sk
t,τ,` =


M̃k

t,τ = maxv(̃Jk
t,τ(v)) ` = 0

M̃k
t,τ − µ̃

k
t,τ,`

max(σ̃k
t,τ,`, 1)

` > 0

µ̃k
t,τ,l =

1
l
∑t′=t−1

t′=t−l M̃k
t′,τ

σ̃k
t,τ,l =

√
1

l − 1
∑t′=t−1

t′=t−l (M̃k
t′,τ− µ̃

k
t,τ,l)

2
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Heterogeneous Null

homogeneous null: p < q

Time Series of Attributed Graphs

p
p

p p
p

q

3 / 4

heterogeneous null: p 6 s < {h, q}

Time Series of Attributed Graphs

p

s

h

p
p

s

h s

q

4 / 4
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Theory

H0 : {Qv} = {Q0
1(t), · · · ,Q

0
n(t)}, ∀t

HA :

{
{Qv} = {Q0

1(t), · · · ,Q
0
n(t)}, t < t? − 1

{Qv} = {QA
1 (t), · · · ,Q

A
m(t),Q0

m+1(t), · · · ,Q
0
n(t)}, t > t? − 1

1st approximation =⇒ stochastic block model:

H0 : Gt
iid
∼ SBM(PB×B,nB×1), ∀t

HA :

Gt
iid
∼ SBM(PB×B,nB×1), t 6 t? − 1

Gt
iid
∼ SBM(PB×B+diag(0, · · · , 0, δ),nB×1), t > t?
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Theory
maxdegree, 1st approximation

Theorem

lim
n→∞S L

=

CT,H∑
c=1

πT,H,cg(·; θT,H,c).

g : Gumbel
C : number of components
π : mixture coefficients
T ∈ {Ψ,Φ}

H ∈ {H0,HA}

β(us) −β(them)
(` = 0, τ = 1)

h

q
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Theory
maxdegree, 1st approximation

Theorem

lim
n→∞S L

=

CT,H∑
c=1

πT,H,cg(·; θT,H,c).

g : Gumbel
C : number of components
π : mixture coefficients
T ∈ {Ψ,Φ}

H ∈ {H0,HA}

β(us) −β(them)
(` = 0, τ = 1)

h
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Theory & Simulation
maxdegree, 1st approximation
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Theory & Simulation
maxdegree
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Theory & Simulation
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Conclusion

“them” is admissible!

Discussion

• there remains theory, simulation, and experiments
yet to be done . . .

• power vs. computational complexity tradeoff
for scan statistics on streaming graphs!
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Leopold Kronecker to Hermann von Helmholtz:

“The wealth of your practical experience
with sane and interesting problems

will give to mathematics
a new direction and a new impetus.”

Kronecker Helmholtz
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