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Abstract

We propose a robust, scalable, integrated methodology for community detection and

community comparison in graphs. In our procedure, we first embed a graph into an

appropriate Euclidean space to obtain a low-dimensional representation, and then

cluster the vertices into communities. We next employ nonparametric graph

inference techniques to identify structural similarity among these communities.

These two steps are then applied recursively on the communities, allowing us to

detect more fine-grained structure. We describe a hierarchical stochastic

blockmodel—namely, a stochastic blockmodel with a natural hierarchical

structure—and establish conditions under which our algorithm yields consistent

estimates of model parameters and motifs, which we define to be stochastically

similar groups of subgraphs. Finally, we demonstrate the effectiveness of our

algorithm in both simulated and real data. Specifically, we address the problem of

locating similar subcommunities in a partially reconstructed Drosophila connectome

and in the social network Friendster.

http://www.cis.jhu.edu/~parky/HSBM/

V.Lyzinski M.Tang A.Athreya Y.Park

http://www.cis.jhu.edu/~parky/HSBM/


Introduction
Problem

In disciplines as diverse as social network analysis and
neuroscience, graphs are believed to be composed of loosely
connected smaller graph primitives.
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Task: Estimate Structure

cortical
graph G

n vertices
R subgraphs

nr vertices
subgraph
Hr = Ω(Vr)

m motifs

Goal

To develop theoretically-sound robust, scalable, integrated
methodology for hierarchical community detection and community
classification in graphs.
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Background

Definition (Random Dot Product Graph (RDPG))

Let F be a distribution on a set X ⊂ Rd such that 〈x, x ′〉 ∈ [0, 1]
for all x, x ′ ∈ X. We say that (A, X) ∼ RDPG(F) is an instance of a
random dot product graph (RDPG) if X = [X1, . . . , Xn]

> with

X1, X2, . . . , Xn
i.i.d.
∼ F, and A ∈ {0, 1}n×n is a symmetric hollow

matrix satisfying

P[A|X] =
∏
i>j

(X>i Xj)
Aij(1 − X>i Xj)

1−Aij .
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Background

Definition (Stochastic Blockmodel (SBM))

We say that an n vertex graph (A, X) ∼ RDPG(F) is a (positive
semidefinite) stochastic blockmodel (SBM) with K blocks if the
distribution F is a mixture of K point masses,

F =

K∑
i=1

π(i)δξi ,

where ~π ∈ (0, 1)K satisfies
∑

i π(i) = 1, and the distinct latent
positions are given by ξ = [ξ1, ξ2, . . . , ξK]

> ∈ RK×d. In this case,
we write G ∼ SBM(n, ~π, ξξ>), and we refer to ξξ> ∈ RK,K as the
block probability matrix of G.
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Background
Definition (Hierarchical Stochastic Blockmodel (HSBM))

We say that (A, X) ∼ RDPG(F) is an instantiation of a D-dimensional
hierarchical stochastic blockmodel if F can be written as the mixture

F =

R∑
i=1

π(i)Fi,

where ~π ∈ (0, 1)R satisfies
∑

i π(i) = 1, and for each i ∈ [R], Fi is itself a mixture
of point mass distributions

Fi =
K∑

j=1

πi(j)δξ(i)(j,:)

where ~πi ∈ (0, 1)K satisfies
∑

j πi(j) = 1. The distinct latent positions

ξ = [(ξ(1))>| · · · |(ξ(R))>]> ∈ RRK×D further satisfy
〈
ξ(i)(`, :), ξ(j)(h, :)

〉
6 p for

1 6 i 6= j 6 R and `, h ∈ [K]. We then write

G ∼ HSBM(n, ~π, {~πi}
R
i=1, ξξ>).

6 / 24



Background
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Background
Denoting by JK,d the K× d matrix of all ones, we write

ξ =


ξ(1)

ξ(2)

...
ξ(R)

 =


χ1 δJK,d · · · δJK,d
δJK,d χ2 · · · δJK,d

...
...

. . .
...

δJK,d δJK,d · · · χR

 ∈ RRK×D, (1)

where for each i ∈ [R], χi ∈ RK×d, and

δ :=

√
d + pd(R − 2) −

√
d

d(R − 2)
is chosen to make the off block-diagonal elements of the
corresponding edge probability matrix ξξT bounded above by an
absolute constant p. In this setting, for each i ∈ [R] the latent
positions

ξ(i) :=
[
δJK,d(i−1) χi δJK,d(R−i)

]
∈ RK×D, (2)

are those associated with Hi, the i-th induced SBM subgraph of G.
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Background

Definition (Motifs)

Let (A, X) ∼ RDPG(F) and (B, Y) ∼ RDPG(G). We say that A and
B are of the same motif if there exists a unitary transformation U
such that F = G ◦U.
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Task: Estimate Structure

cortical
graph G

n vertices
R subgraphs

nr vertices
subgraph
Hr = Ω(Vr)

m motifs
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Main algorithm

The following algorithm is our methodology for identifying and
estimating the structural properties of repeated motifs.

Algorithm 1 Detecting hierarchical structure for graphs
1: Input: Adjacency matrix A ∈ {0, 1}n×n for a latent position random graph.
2: Output: Subgraphs and characterization of their dissimilarity
3: while Cluster size exceeds threshold do
4: Step 1: Compute the adjacency spectral embedding X̂;

5: Step 2: Project the rows of X̂ onto the sphere yielding Ŷ; i.e., for each i ∈ [n],
Ŷi := X̂i/‖X̂i‖2;

6: Step 3: Cluster Ŷ to obtain subgraphs Ĥ1, · · · , ĤR;

7: Step 4: For each i ∈ [R], use ASE to re-embed Ĥi, obtaining X̂Ĥi
;

8: Step 5: Compute Ŝ := [Tn̂r,n̂s(X̂Ĥr
, X̂Ĥs

)] producing a pairwise dissimilarity ma-

trix on induced subgraphs;
9: Step 6: Cluster induced subgraphs into motifs according to Ŝ;

10: Step 7: Recurse on each motif;
11: end while
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Background

Definition (Adjacency Spectral Embedding (ASE))

Given an adjacency matrix A ∈ {0, 1}n×n of a d-dimensional
RDPG(F), the adjacency spectral embedding of A into Rd is given

by X̂ = UAS1/2
A where

|A| = [UA|ŨA][SA ⊕ S̃A][UA|ŨA]

is the spectral decomposition of |A| = (A>A)1/2, SA is the diagonal
matrix with the (ordered) d largest eigenvalues of |A| on its
diagonal, and UA ∈ Rn×d is the matrix whose columns are the
corresponding orthonormal eigenvectors of |A|.

D.L. Sussman, M. Tang, D.E. Fishkind, and C.E. Priebe,
“A consistent adjacency spectral embedding for stochastic blockmodel graphs,”
Journal of the American Statistical Association, vol. 107, no. 499, pp. 119-1128,
2012.
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Background

Theorem

Let (A, X) ∼ RDPG(F) and (B, Y) ∼ RDPG(G) be d-dimensional
random dot product graphs. Consider the hypothesis test

H0 : F = G ◦U against HA : F 6= G ◦U

Denote by X̂ = {X̂1, . . . , X̂n} and Ŷ = {Ŷ1, . . . , Ŷm} the adjacency
spectral embedding of A and B, respectively. Define the test
statistic Tn,m = Tn,m(X̂, Ŷ) as follows:

Tn,m(X̂, Ŷ) =
1

n(n − 1)

∑
j 6=i

κ(X̂i, X̂j)

−
2

mn

n∑
i=1

m∑
k=1

κ(X̂i, Ŷk) +
1

m(m − 1)

∑
l 6=k

κ(Ŷk, Ŷl) (3)

where κ is a radial basis kernel, e.g., κ = exp(−‖ ·− · ‖2/σ2).



Background

Theorem (cont.)

Suppose that m, n→∞ and m/(m + n)→ ρ ∈ (0, 1). Then under
the null hypothesis of F = G ◦U,

(m + n)(Tn,m(X̂, Ŷ) − Tn,m(X, YW))
a.s.−→ 0 (4)

where W is any orthogonal matrix such that F = G ◦W. In
addition, under the alternative hypothesis of F 6= G ◦U, there
exists an orthogonal matrix W ∈ Rd×d, depending on F and G but
independent of m and n, such that

(m + n)
log2(m + n)

(Tn,m(X̂, Ŷ) − Tn,m(X, YW))
a.s.−→ 0. (5)

M. Tang, A. Athreya, D. L. Sussman, V. Lyzinski, and C. E. Priebe,
“A nonparametric two-sample hypothesis for random dot product graphs,” 2014,
arXiv preprint. http://arxiv.org/abs/1403.7249.

http://arxiv.org/abs/1403.7249.


Simulation
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(a) Depiction of the adjacency matrix of a two-level HSBM graph with 3
distinct motifs. The subgraphs corresponding to these motifs are outlined in
blue (H3, H6, H8), green (H1, H2, H4), and red (H5, H7).

(b) Heatmap depicting the dissimilarity matrix Ŝ produced by Algorithm 1 for
the 2-level HSBM.
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Spherical R-means Clustering
Theorem
Suppose G is a hierarchical stochastic blockmodel whose latent position
structure is of the form in Eq. (1). Suppose that R is fixed and the {Hr}

correspond to M different motifs, i.e., the set {χ1,χ2, . . . ,χR} has M 6 R
distinct elements. Assume that the constants defined above satisfy (with
πmin := mini π(i))

δD > 0; (6)√
1 −

p
α2 >

(
2 +

1
√
πmin

)√
1 −β. (7)

Let c be arbitrary. There exists a constant n0 = n0(c) such that if n > n0, then
for any η satisfying n−c < η < 1/2, the procedure in Algorithm 1 yields

consistent estimates Ĥ1, · · · , ĤR for H1, · · · , HR and Ŝ for S with probability
greater than 1 − η.

Corollary

Clustering the matrix of p-values associated with Ŝ yields a consistent

clustering of {Ĥi}
R
i=1 into motifs.
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Spherical R-means Clustering
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Notional illustration of projection onto the sphere after embedding and
its effect on K-means clustering. The embedded points are colored red
prior to projection and colored blue after projection. Eq. (7) specified
that the angles between the blocks after projection (bounded from below
by cos−1 (p/α2)) should be sufficiently large when compared to the
angles within the blocks (bounded from above by cos−1(β)).
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Hierarchical Graph Structure
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Notional depiction of a general hierarchical graph structure. The colored
nodes in the first and second level of the tree (below the root node)
correspond to induced subgraphs and associated motifs.
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Example: Fly Structural Data
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Visualization of our method applied to the Drosophila connectome. We
show (a) the adjacency matrix, (b) the clustering derived via ASE,
projection to the sphere and k-means clustering.

S. Takemura, el al. ”A visual motion detection circuit suggested by drosophila
connectomics,” Nature, vol. 500, no. 7461, pp. 175-181, 2013. 18 / 24



Example: Fly Structural Data
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(d)

Visualization of our method applied to the Drosophila connectome. (c) Ŝ
calculated from these clusters. (d) Average silhouette width of clustering

Ŝ into k motifs. By this measure, clustering the subgraphs based on this
Ŝ suggests two repeated motifs: {1, 2, 3, 5, 6, 7} and {4, 8}.
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Example: Friendster Network Data
http://snap.stanford.edu/data/com-Friendster.html

Dataset Statstics

Nodes 65,608,366
Edges 1,806,067,135
Average clustering coefficient 0.1623
Number of triangles 4,173,724,142
Fraction of closed triangles 0.005859
Diameter (longest shortest path) 32
90-percentile effective diameter 5.8

D. Zheng, D. Mhembere, R. Burns, J.T. Vogelstein, C.E. Priebe, and A.S. Szalay,
“Flashgraph: Processing billion-node graphs on an array of commodity SSDs,”
in 13th USENIX Conference on File and Storage Technologies (FAST 15), Santa
Clara, CA, Feb. 2015, pp. 45-58.
https://www.usenix.org/conference/fast15/technical-sessions/

presentation/zheng
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Example: Friendster Network Data
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Heat map depiction of the level one Friendster estimated dissimilarity matrix
Ŝ ∈ R16×16. In addition, we cluster Ŝ using hierarchical clustering and display the
associated hierarchical clustering dendrogram.
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Example: Friendster Network Data
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Heat map depiction of the level two Friendster estimated dissimilarity matrix Ŝ ∈ R9×9

of Ĥ3. In addition, we cluster Ŝ using hierarchical clustering and display the associated
hierarchical clustering dendrogram.
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Yogi Berra:

“In theory there is no difference between theory and practice.
In practice, there is.”
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Leopold Kronecker to Hermann von Helmholtz (1888):

“The wealth of your practical experience
with sane and interesting problems

will give to mathematics
a new direction and a new impetus.”

Kronecker Helmholtz
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