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(a) G1 & Gy: VN succeeds
(b) G & G5: VN fails under contamination
(c) Gf & GY: VN succeeds after regularization
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(b) G1 & Gy: VN succeeds

(c) G & G5: VN fails under contamination

(d) G1 & G§': VN succeeds after regularization



R Mastrandrea, J Fournet, and A Barrat,
Contact Patterns in a High School:

A Comparison between Data Collected Using

Wearable Sensors, Contact Diaries and Friendship Surveys,
PLoS ONE, 2015.

HG Patsolic, Y Park, V Lyzinski, CE Priebe,
Vertex Nomination Via Local Neighborhood Matching,
https://arxiv.org/abs/1705.00674
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lllustrative Real Data Example

Core:

VN succeeds.
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lllustrative Real Data Example

Full:

VN fails.

9/65



lllustrative Real Data Example

Regularized:

VN succeeds.
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Definition
Consider X = [Xq, ..., X,]T € R"x4 satisfying XXT e [0, 1]mxn.
The bivariate graph valued random variables (G, G’)
with respective adjacency matrices A and A’
are said to be distributed as a pair of p-correlated random dot
product graphs with parameter X (abbreviated
(G,G’) ~ p-RDPG(X)) if
1. Marginally, G, G’ ~ RDPG(X), and

2. {Ai,]"Alé,l}{i,j},{k,l}e(‘z’) are collectively independent except that

for each {i,j} € (%),

correlation(A,',]',A{,j) =p.

HG Patsolic, Y Park, V Lyzinski, CE Priebe,
Vertex Nomination Via Local Neighborhood Matching,
https://arxiv.org/abs/1705.00674
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The p-RDPG model defines what we mean by “corresponding
vertices,” in which we generate two graphs G and G’ from the
same model in such a way that the nodes in G correspond to the

nodes of G’ via an identity mapping.
If we wish to also capture a relabeling of the vertices, we can apply

a random permuation to the vertices of G’; however, this step,
while more practical from a real-data perspective, is unnecessary

for theoretical purposes.
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Our framework posits (H, H') ~ p-RDPG(X) for a latent position
matrix X € R(+st+n)xd,

In order to generate the full graphs G and G’ which also have
unshared vertices, we generate G ~ RDPG([X, Y]) and

G’ ~RDPG([X, Y’]), so that the induced subgraphs

(H,H’) ~ p-RDPG(X) and the remaining edges of G and G’ are
formed independently as in the case for the general RDPG.
Thus, the first 14 s+ n vertices in the two graphs correspond to
one another via the identity map and the remaining m and m’
vertices of G and G’, respectively, represent the unshared vertices.
Here, Y € R™*? and Y’ € R™ >4 represent the respective latent
positions for the unshared vertices in G and G'.

For ease of notation, we will write (G, G’) ~ p-RDPG(X,Y,Y’),
where (G, G’) is realized as two graphs: Gonn=1+s+n+m
vertices {(x}USUWU]J and G’ onn/ =1+s+n+m’ vertices
{xTuS"UW’'uJ’.
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On consistent vertex nomination schemes
https://arxiv.org/abs/1711.05610
(Journal of Machine Learning Research)

Vince Lyzinskit  Keith Levint  Carey E. Priebe*
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given a collection of vertices of interest,
find more with similar structural & functional role
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given a collection of vertices of interest,
find more with similar structural & functional role

one graph: within graph
multiple graphs: between graphs



A visual representation of the VN framework:

Given vertex of interest v* in graph G; = (V1, E1),

find the corresponding v*' (3?) in graph G, = (V,, Es),
ranking the vertices of G,

so that v* appears near the top of the nomination list.



Given a vertex of interest in a network Gy, the vertex nomination
problem seeks to find the corresponding vertex of interest (if it
exists) in a second network G,.

Although the vertex nomination problem and related tasks have
attracted much attention in the machine learning literature, with
applications to social and biological networks, the framework has
so far been confined to a comparatively small class of network
models, and the concept of statistically consistent vertex
nomination schemes has been only shallowly explored.

We extend the vertex nomination problem to a very general
statistical model of graphs, and, drawing inspiration from the
long-established classification framework in the pattern recognition
literature, we provide a rigorous theoretical framework for defining
the key notions of Bayes optimality and consistency in this
expanded framework of vertex nomination, including a derivation
of the Bayes optimal vertex nomination scheme.

We prove that no universally consistent vertex nomination scheme
exists.
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On consistent vertex nomination schemes
no universally consistent VN scheme exists?
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no universally consistent VN scheme exists?

(a) "Statistical inference on graphs is an important branch of
modern statistics and machine learning.”

(b) "the vertex nomination (VN) inference task” is a foundational
inference task for graphs.

(c) L*, u.c., etc provide *the* "firm theoretical context in which to
frame algorithmic progress”.

—

this is among the most interesting foundational contributions to

" A Probabilistic Theory of Pattern Recognition” in many years,
and among the most interesting foundational contributions to

" A Probabilistic Theory of Pattern Recognition” for graphs ... ever.



no universally consistent VN scheme exists?

The classical classification setting:

o (X,Y), (Xq,Y1), +, (Xn, Yy) ~F

e training data D, ={(X1,Y1), -+, (Xu, Yu)}

e to-be-classified observation X with unobserved class label Y
° Ln(g) :P@(X; D) #* Y]

o L* =infe P[g(X) # Y]



no universally consistent VN scheme exists?

A general theorem by Stone (1977) allows us to deduce
universal consistency of several classification rules.

In particular:

the k-nearest neighbors classifier
with k(n) — oo and k(n)/n — 0.

Charles J. Stone, Consistent Nonparametric Regression,
The Annals of Statistics, vol. 5, no. 4, pp. 595-620, 1977.



Graph matching — aligning a pair of graphs to minimize their edge
disagreements — has received wide-spread attention from both
theoretical and applied communities over the past several decades,
including combinatorics, computer vision, and connectomics. lIts
attention can be partially attributed to its computational difficulty.
Although many heuristics have previously been proposed in the
literature to approximately solve graph matching, very few have
any theoretical support for their performance. A common
technique is to relax the discrete problem to a continuous problem,
therefore enabling practitioners to bring gradient-descent-type
algorithms to bear. We prove that an indefinite relaxation
(when solved exactly) almost always discovers the optimal
permutation, while a common convex relaxation almost
always fails to discover the optimal permutation.

IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 38, no. 1, pp. 60-73, 2016.



Theorem 1: Suppose A and B are adjacency matrices for p-
correlated Bernoulli(A) graphs, and there is an « € (0,1/2)
such that A; ; € [a,1 — o] for all © # j. Let P* € II, and
denote A’ := P*AP*T.

a) If (1 —a)(1 — p) < 1/2, then it almost always holds that

arg JTIjnei% —(A'D,DB) = arg IIJHE.II% |A" — PBPT||p = {P*}.

b) If the between graph correlation p <1, then it almost always
holds that P* ¢ argminpep ||[A'D — DB||p.

IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 38, no. 1, pp. 60-73, 2016.



Definition: Bayes error of a VN scheme

Let (G1, Gp) ~ Fc im0 with vertex of interest v* € C, and let
o:V, — W be an obfuscating function. For a VN scheme
® € Vy,m, we define the level-k error of @ at v* to be

Li(®@,v") =P (g, 6,) [ranko (G, ,0(G,),0) (0(0)) = k+1] .

NFc,n,m,G

We define the level-k Bayes optimal VN scheme to be any element
Y € argmingey,,, Ly(®,0*), and define the level-k Bayes error to
be Lj(v*) = Lx(¥, v*) for Bayes optimal V.

The level-1 Bayes error would correspond to the Bayes error if we
viewed vertex nomination as a simple classification problem rather
than a more complicated ranking problem. That is, L1 (®, v*) is
simply the probability that @ fails to “classify” o(v*) as the vertex
corresponding to v* in 0(G»).



Remark:

We note that the error defined above depends on # and m in a
manner distinct from that defined in the classical classification
framework. In the classical setting, L(h,) denotes the error rate of
a classifier that classifies a single observation X based on 7 training
instances {(X;, Y;)}!' ;. In the case of VN, the notion of labeled
training instances is, at best, more hazy. Indeed, in the present
setting, the training data and test data are inseparable—the graphs
(more specifically, their edges) are the training data.



On consistent vertex nomination schemes

Theorem:

Let ®* =....
Then Li(®*,v*) = Lf(v*).



Definition: Consistency of a VN scheme

Let F= (Fc(n),n,m(n),ﬁ(n))zo:no be a sequence of nominatable
distributions in N with nested cores satisfying lim,,_,, m(n) = co.
For a given non-decreasing sequence {k,}, we say that a VN rule
D = (O iu(n) ) nzn, s level-{k,,} consistent at v* with respect to F if

nh_r)go Ly, (@ m(n), 0°) — Lg (0*) =0,
for any sequence of obfuscating functions of V, with |V,| = m(n).
If a scheme @ is level-{k,} consistent at v* for a constant sequence
kpo=k n=1,2,..., then we say simply that @ is level-k
consistent.



In the VN problem, the complexity of the model generating the
data can also grow in 7, which effectively thwarts the ability of a
VN rule to asymptotically overcome a sequence of adversarial

graph models.



Theorem:

Let € € (0,1) be arbitrary, and consider a VN rule & = (@, ).
For any nondecreasing sequence (k;) satisfying k,, = o(m),
there exists a sequence of distributions (F;,me) in N

with nested cores such that

IimsupnﬁooL;{‘n(v*) =e<1=limy_ oLy, (Pym v").

Unlike in the classification setting,
no universally consistent VN scheme exists!



Definition

Let 9 be the collection of all nested-core nominatable sequences.
For a nondecreasing sequence (k;,), we say that € € 9 is a maximal
(ky,)-consistency class if the following two conditions hold.

i. There exists a VN rule @ that is jointly (k;)-consistent for
each F € ¢;

ii. If F/ ¢ &, then there does not exist a VN rule @ that is jointly
(k;;)-consistent for each F € € U{F'}.

A natural question to ask is whether it is possible to partition 9t
into a finite number of maximal (k;)-consistency classes for a
particular sequence (k;)$° ;7 If so, then the lack of universally
consistent VN-schemes can be operationally mitigated via an

ensemble nomination approach.

However . ..



For any sequences (k;;), any partition of 91 into maximal
(ky,,)-consistency classes must include countably infinite parts.

Theorem

Let (k,) be a sequence of nondecreasing numbers satisfying
ky =0n). If M =Uxecn€x is a partition of N into maximal
(k,,)-consistency classes, then |A| is at least X.
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One of the consequences of a lack of universal consistency is that,
for any given VN rule and nondecreasing sequence (k),
nominatable distributions exist outside of the (k;)-consistency class

Qﬁg”) ={F e N s.t. @ is (k,)-consistent for F}.

Given @ and F, is it possible to verify Fe Q‘g") ?

This is a central (theoretical) question in practice,
as the first step in correcting for an inconsistent VN scheme
is being able to detect if a VN scheme is, in fact, inconsistent.

Unfortunately,
such a verification is impossible sans metadata/supervision.



Consider the one-sample symmetriz location model ‘P defined by
Xi=p+e;, i1=1,...,n, (3.5.1)

where the errors are independent, identically distributed, and symmetric about 0 with com-
mon density f and d.f. F. If the error distribution is normal, X is the best estimate in a
variety of senses.

In our new formulation it is the X that obey (3.5.1). A reasonable formulation of a
model in which the possibility of gross errors is acknowledged is to make the ¢; still i.i.d.
but with common distribution function F’ and density f of the form

flx)=(1- A)éw (g) + Mh(z). (3.5.2)

Here h is the density of the gross errors and \ is the probability of making a gross error.
This corresponds to,

X; = X with probability 1 — A
= Y, with probability \

where Y; has density h(y — p) and (X*,Y;) are i.i.d. Note that this implies the possibly
unreasonable assumption that committing a gross error is independent of the value of X*.

Bickel & Doksum



To model adversarial attacks in the VN-framework, we introduce
the concept of an adversary.
We say A ={f4,V .4} is an adversary if

1. fa:Sm — Gm such that V(f4(G)) = V(G),
2. Vq CVI(G),
3. If

K= {v,w e V(G) s.t. (v,w) € E(fA(G))\E(G)} U

{v,w € V(G) s.t. (v,w) € E(G) \E(fA(G))},

then K C V4.

We say that A is an edge-augmenting adversary if

E(G) C E(fa(G)), and similarly for an edge-removing adversary.
In other words, f4 is just a function that operates only on the
edges incident to the vertices of V4.

We refer to V 4 as the vertices controlled by A.



Consider a stochastic blockmodel on G;, with two blocks, By and
B, with n/2 vertices in each block. The edge-probability matrix B

is given by
()
rq
withp>g>7r>0.

Consider the following model-contamination procedure:

1. First, ¢y vertices are selected at random from V' (call them
W), and c_ vertices are selected at random from V' \ W..

2. For each vertex v € W, , and each vertex u € V\ W_, if there
is not an edge, an edge is then created with probability s .

3. For each vertex v € W_, and each vertex u € V\ W, if there
is an edge, it is deleted with probability s_.

Notice that this gives rise to a new stochastic block model with
the edge-probability matrix B given by



. Bl BT Bl_ B,

By p p+si(1—p) p—s_p r

Bf |p+si(1—p) p+si(l1—p) p r4sp(l—r

. +(1—=p)(1—s4)s+

By p—s_p p p—s_p r—s_(1—r
B —p(1—s_)(s5_)

B, r r+si(1—r) r—s_r q

B; r+s+(1—71) r+s4(l1—r) r g+s+(l—q

) +H1—7)(1—s+)5+

By r—s_r r r—s_r qg—s_q

—r(l—s_)s_

where E’T are the vertices in W, N By, Bl_ are the vertices in
BiNW_, and By are the vertices in By \ (Bf UB;), with B,
defined analogously.

We will assume that our vertex of interest was unchanged in B1.
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ROBUST AND COMPUTATIONALLY FEASIBLE COMMUNITY
DETECTION IN THE PRESENCE OF ARBITRARY
OUTLIER NODES!

By T. ToNy CAI AND XIAODONG L1
University of Pennsylvania

Community detection, which aims to cluster N nodes in a given
graph into r distinct groups based on the observed undirected edges,
is an important problem in network data analysis. In this paper, the
popular stochastic block model (SBM) is extended to the generalized
stochastic block model (GSBM) that allows for adversarial outlier
nodes, which are connected with the other nodes in the graph in
an arbitrary way. Under this model, we introduce a procedure using
convex optimization followed by k-means algorithm with k£ =r.



Theorem

Suppose that @ is a VN scheme that runs spectral clustering on
the contaminated graph by first selecting the number of
communities in a consistent manner and nominating the vertices in
the group with the highest probability of within-group connection.
Suppose that we are interested in rank k, = n/2. If either

1. % <s_(2—s_) for all n, or

2. *{—:Z <s.(2—s,) foralln,
then @ is no longer consistent with respect to the contaminated
model (provided p # q for all n).

We have a VN scheme.

We have a distribution.

And that distribution is in our scheme’s consistency class.
Now, after contamination,

the new distribution is not in our scheme's consistency class.
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“reality is for people who can’t handle drugs”




Larson’s Rule:
regularization of contaminated graphs
for VN inference task

Jonathan Larson, MSR Chris White, MSR



Trimmed estimator. From Wikipedia, the free encyclopedia. In statistics, a trimmed
estimator is an estimator derived from another estimator by excluding some of the
extreme values, a process called truncation. This is generally done to obtain a more
robust statistic, and the extreme values are considered outliers.

Trimmed estimator - Wikipedia
https://en.wikipedia.org/wiki/Timmed_estimator
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extreme values, a process called truncation. This is generally done to obtain a more
robust statistic, and the extreme values are considered outliers.

Trimmed estimator - Wikipedia
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The modularity of a graph with respect to some vertex partition
measures how good the partition is, or how separated the different
partitions are from each other. It is defined as

1 Al]—kl*k/
Q=2 Z] <2m ) Ao
where

e m is the number of edges,

Ajj is the element of the adjacency matrix,

ky is the degree of v,

Cy is the type (or component) of v,

d(x,y) equals 1 if x =y and O otherwise.



proportion of high degree vertices trimmed
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(a) G
(b) Gl & Gy: VN succeeds

(c) G1 & G5: VN fails under contamination
(d) G & G” VN succeeds after regularization



Simulation Results
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Yogi Berra (purportedly):

“In theory there is no difference between theory and practice.
In practice, there is.”

(cf. “That’s all well and good in practice, but how does it work in theory?”)



About the data:

FB full | Survey full | FB core | Survey core
V| 156 134 82 82
|E| 1437 406 513 214
average degree | 18.42 6.06 12.51 5.22



High School Data: Facebook & Friendship

Regularized: VN succeeds.



x=y : reordered v in VAW . rank(VN(contaminated)) - rank(VN(regularizec))

all: Gy core ; Gy core — full — regularized

left: Louvain modularity against regularization trim %
middle: vn o gmm o ase

right: p ~ 0.025



High School Data: Facebook & Friendship
Results
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Zebrafish Results
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Leopold Kronecker to Hermann von Helmholtz (1888):

“The wealth of your practical experience
with sane and interesting problems
will give to mathematics
a new direction and a new impetus.”

Geerece s

Kronecker Helmholtz





