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Introduction
Motivation

Many contemporary theories of neural information processing
suggest that the neocortex employs algorithms composed of
repeated instances of a limited set of computing primitives.
There is a recognized need for tools for interrogating the structure
of the cortical microcircuits believed to embody these primitives.

Cortical Column Conjecture

Neurons are connected in a graph that exhibits motifs representing

repeated processing modules.

J. C. Horton and D. L. Adams. “The cortical column: a structure
without a function,” Philosophical Transactions of the Royal Society B,
360(1456):837-862, Apr. 2005.

V. Mountcastle. “The columnar organization of the neocortex,” Brain,
120(4):701-722, Apr. 1997.
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Introduction
Fundamental Question

What are the relevant cortical computing structures associated

with recurring circuit motifs?

Goals

1. To obtain, and to understand the error characteristics of, an
observed cortical graph.

2. To develop, and to understand the theoretical & practical
properties of, general methodologies for end-to-end cortical
graph inference.

We aim to advance theoretical neuroscience, and impact
algorithms for machine intelligence, through insights derived from
high-fidelity reconstructions of cortical microcircuits; in particular,
we will estimate relevant cortical computing parameters from
observed cortical graphs.
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Science, April 25, 2014
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Discovery of BrainwideNeural-Behavioral
Maps via Multiscale Unsupervised
Structure Learning
Joshua T. Vogelstein,1,2* Youngser Park,1* Tomoko Ohyama,3* Rex A. Kerr,3 James W. Truman,3

Carey E. Priebe,1†‡ Marta Zlatic3†‡

A single nervous system can generate many distinct motor patterns. Identifying which neurons and circuits
control which behaviors has been a laborious piecemeal process, usually for one observer-defined
behavior at a time. We present a fundamentally different approach to neuron-behavior mapping.
We optogenetically activated 1054 identified neuron lines in Drosophila larvae and tracked the
behavioral responses from 37,780 animals. Application of multiscale unsupervised structure learning
methods to the behavioral data enabled us to identify 29 discrete, statistically distinguishable,
observer-unbiased behavioral phenotypes. Mapping the neural lines to the behavior(s) they evoke
provides a behavioral reference atlas for neuron subsets covering a large fraction of larval neurons.
This atlas is a starting point for connectivity- and activity-mapping studies to further investigate the
mechanisms by which neurons mediate diverse behaviors.

Nervous systems can generate a wide range
of motor outputs, depending on their in-
coming sensory inputs and internal state.

A comprehensive understanding of how behav-

ioral diversity and selection is achieved requires
the identification of neural circuits that mediate
many distinct motor patterns in a given nervous
system. Mapping a functional circuit for one be-

25 APRIL 2014 VOL 344 SCIENCE www.sciencemag.org386

RESEARCH ARTICLES

Timothy O’Leary and Eve Marder, “Mapping Neural Activation onto Behavior in an Entire Animal,”
Science, April 25, 2014.
“(Authors) usher in a new era of integrated methods for deciphering how an entire nervous system

generates behavior... (They) have thus achieved a technical, multidisciplinary tour de force that will provide

a rich source of research questions.”
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Figure 2. (f) Post-hoc human labels assigned to the automatically
detected behaviotype families and subfamilies. (e) Mean and standard
error of the responses of the eight behaviotype subfamilies.

Vogelstein et al, “Discovery of Brainwide Neural-Behavioral Maps via Multiscale Unsupervised Structure
Learning,” Science, vol. 344 no. 6182, 386-392, April 25, 2014.
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Introduction Notable Findings Vision & Plans

Notable Findings I

Figure 4. Examples of significant neuron lines and candidate neurons
involved in distinct behaviotypes.

Vogelstein et al, “Discovery of Brainwide Neural-Behavioral Maps via Multiscale Unsupervised Structure
Learning,” Science, vol. 344 no. 6182, 386-392, April 25, 2014.
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Notable Findings II
Adjacency Spectral Graph Embedding & Subsequent Inference

The eigendecomposition of an adjacency matrix provides a way to
embed a graph as points in finite dimensional Euclidean space.
This embedding allows the full arsenal of statistical and machine
learning methodology for multivariate Euclidean data to be
deployed for graph inference. Our work analyzes this embedding in
the context of various random graph models with a focus on the
impact for subsequent inference. In summary, this body of work
demonstrates that for a broad class of graph models and inference
tasks, adjacency spectral embedding allows for accurate graph
inference via standard multivariate methodology.
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(d) spatial embedding

Takemura et al, “A visual motion detection circuit suggested by Drosophila connectomics,” Nature, 500,
175-181, August 8, 2013.
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Introduction Notable Findings Vision & Plans

Cortical Column Conjecture

Cortical Column Conjecture

The cortical column conjecture suggests that neurons in the
neocortex are connected in a graph that exhibits motifs
representing repeated processing modules.

Our focus is on extracting, and then estimating the structure of,
the cortical graph, for the purpose of subsequent modeling and
algorithm development.
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Vision & Plans

End-to-End Pipeline
for estimating cortical graph structure...

... for the purpose of
subsequent modeling and algorithm development
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Cortical Graph
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Task: Estimate Structure

cortical
graph G

n vertices
R subgraphs

nr vertices
subgraph
Hr = Ω(Vr)

m motifs

• Cortical graph G:
hierarchical block model on
n vertices (neurons).

• Induced subgraphs Hr:
stochastic block models on
nr vertices, r = 1, . . . ,R.

1. Identify large-scale
structures in G ! Hr.

2. Identify clusters of the Ĥr’s
corresponding to repeated
motifs.

3. Estimate structural
parameters.
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Vision & Plans

The Big Five Graph Inference Challenges

1. Clustering the vertices in a graph

2. Clustering a collection of graphs

3. Graph matching

4. Testing and estimation

5. Robustness to errorfully observed graphs

All of these challenges must be addressed in the context of
available vertex- and edge-attributes – we will have neuron types
(excitatory, inhibitory), edge weights (synapse strengths), spatial
information, etc. The development of optimal robust
methodologies for attributed graphs presents significant additional
challenges.
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From Images to Graphs to Inference
“... a goal of the computer vision is to reconstruct a graph
with error properties that the subsequent inference can tolerate ...”

(a) EM data
(Davi Bock, HHMI Janelia)

(b) Segmentation
(Hanspeter Pfister, Harvard)

C.E. Priebe, D.L. Sussman, M. Tang, J.T. Vogelstein, “Statistical inference on errorfully observed graphs,”
Journal of Computational and Graphical Statistics, accepted for publication, 2014.
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Stochastic Block Model

Let BK be the collection of symmetric K ⇥ K block-probability
matrices;

BK := {B 2 [0, 1]K⇥K|BT = B}.

Let Mn,K be the collection of length K non-negative integer-valued
vectors ~n with entries summing to n;

Mn,K := {~n 2 NK|
KX

k=1

~nk = n}.

Given positive integers n and K, consider ~n 2 Mn,K and B 2 BK.
We say a random graph G on vertex set V is a stochastic block
model graph G ⇠ SBM(V,~n,B) if the vertices V are partitioned
into subsets V1, · · · ,VK with sizes given by ~n = (~n1, · · · ,~nK) and
edges {u ⇠ v} are independent Bernoulli random variables with
P[u ⇠ v] = Bij for u 2 Vi and v 2 Vj.

16 / 25
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Hierarchical Stochastic Block Model

Given G = (V,E), where V = [n].

• {Vr}
R
r=1: a disjoint partition of the vertices V, and for each

r = 1, 2, . . . ,R, write nr := |Vr|.

• Hr = ⌦(Vr) = (Vr,Er).

• Hr ⇠ SBM(Vr, ~mr,Br), where ~mr 2 Mnr,K and Br 2 BK.

• for u 2 Vr and v 2 Vr 0 with r 6= r 0, {u ⇠ v} ⇠ Bernoulli(p).

G ⇠ HSBM(V, ~m,B), where ~m = [~m>
1 | ~m>

2 | · · · | ~m>
R ]> and B is

given by

B =

2

6666664

B1 pJK,K · · · pJK,K

pJK,K B2
. . .

...
...

. . .
. . . pJK,K

pJK,K · · · pJK,K BR

3

7777775
.
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Biologically Motivated Model

Our cortical graph G:

• n vertices, with n 2 {103, 104, 105, 106}.

• V = [n] is partitioned into R subsets {Vr}
R
r=1.

• Hr = ⌦(Vr) each have |Vr| = nr = m = 100, K = 5 blocks.

• R = n/m.

• ~mr = [2, 50, 15, 8, 25]> 8r.
•

Br =

2

6664

0.1 0.045 0.015 0.19 0
0.045 0.05 0.035 0.14 0.03
0.015 0.035 0.08 0.105 0.04
0.19 0.14 0.105 0.29 0.13

0 0.03 0.04 0.13 0.09

3

7775 .

• p 2 {10-2, 10-3, 10-4, 10-5}.

Izhikevich E. M. and Edelman G. M. (2008) “Large-Scale Model of Mammalian Thalamocortical Systems,”
PNAS, 105:3593-3598
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Biologically Motivated Model
Large-scale model of mammalian
thalamocortical systems
Eugene M. Izhikevich and Gerald M. Edelman*

The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121

Contributed by Gerald M. Edelman, December 27, 2007 (sent for review December 21, 2007)

The understanding of the structural and dynamic complexity of
mammalian brains is greatly facilitated by computer simulations.
We present here a detailed large-scale thalamocortical model
based on experimental measures in several mammalian species.
The model spans three anatomical scales. (i) It is based on global
(white-matter) thalamocortical anatomy obtained by means of
diffusion tensor imaging (DTI) of a human brain. (ii) It includes
multiple thalamic nuclei and six-layered cortical microcircuitry
based on in vitro labeling and three-dimensional reconstruction of
single neurons of cat visual cortex. (iii) It has 22 basic types of
neurons with appropriate laminar distribution of their branching
dendritic trees. The model simulates one million multicompartmen-
tal spiking neurons calibrated to reproduce known types of re-
sponses recorded in vitro in rats. It has almost half a billion
synapses with appropriate receptor kinetics, short-term plasticity,
and long-term dendritic spike-timing-dependent synaptic plasticity
(dendritic STDP). The model exhibits behavioral regimes of normal
brain activity that were not explicitly built-in but emerged spon-
taneously as the result of interactions among anatomical and
dynamic processes. We describe spontaneous activity, sensitivity
to changes in individual neurons, emergence of waves and
rhythms, and functional connectivity on different scales.

brain models ! cerebral cortex ! diffusion tensor imaging ! oscillations !
spike-timing-dependent synaptic plasticity

The last decade has seen great progress in our understanding
of brain dynamics and underlying neuronal mechanisms.

Linking these mechanisms to behavior such as perception is
facilitated by large-scale computer simulations of anatomically
detailed models of the cerebral cortex (1–3). Although these
models have stressed microcircuitry and local dynamics, they
have not incorporated multiple cortical regions, corticocortical
connections, and synaptic plasticity. In the present article, we
describe a large-scale model of the mammalian thalamocortical
system that includes these components.

Spatiotemporal dynamics of the simulation show that some
features of normal brain activity, although not explicitly built into
the model, emerged spontaneously. The model exhibited self-
sustained activity in the absence of any external sources of input.
The behavior of the model was extremely sensitive to contributions
of individual spikes: adding or removing one spike of one neuron
completely changed the state of the entire cortex in !0.5 s. Regions
of the model brain exhibited collective waves and oscillations of
local field potentials in the delta, alpha, and beta ranges, similar to
those recorded in humans (4). Simulated fMRI signals exhibited
slow fronto-parietal anti-phase oscillations, as seen in humans (5).

The shape and connectivity of the model were determined by
diffusion tensor imaging (DTI) data for a human brain. Experi-
mental data from three species, human, cat, and rat, were incor-
porated to build other details of the model.

Model Structure. Here, we review some of the basic assumptions
used to construct the model, summarized in Figs. 1–3. A full
description is provided in supporting information (SI) Appendix.

For computational reasons, the density of neurons and synapses
per mm2 of cortical surface was necessarily reduced. Accordingly,

the model neurons have fewer synapses and less detailed dendritic
trees than those of real cortical neurons. Although we do not
explicitly model subcortical structures other than the thalamus, we
do simulate brainstem neuromodulation, including the dopaminer-
gic reward system (6, 7) and the cholinergic activating system.
Developmental changes, other than activity-dependent fine-tuning
of connectivity due to dendritic STDP, are also not modeled
explicitly.

Macroscopic Anatomy. Diffusion tensor imaging (DTI) data derived
from magnetic resonance imaging (MRI) of a human brain was
used to identify the coordinates of the cortical surface to allocate
cell bodies of model neurons at appropriate locations. Conse-
quently, the model reflects all areas of the human cortex, the folded
cortical structure with sulci and gyri. The DTI data, analyzed using
the ‘‘TensorLine’’ algorithm (8, 9), formed the white matter tracts
of the model, portions of which are illustrated in Fig. 1, that connect
individual neurons in one area with target neurons in other areas.

So that neuronal density approached that of animal cortices,
spatial scales were reduced by a factor of 4 (so the model cortex

Author contributions: E.M.I. and G.M.E. designed research; E.M.I. performed research;
E.M.I. and G.M.E. analyzed data; and E.M.I. and G.M.E. wrote the paper.

The authors declare no conflict of interest.

*To whom correspondence should be addressed. E-mail: edelman@nsi.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0712231105/DC1.

© 2008 by The National Academy of Sciences of the USA

Fig. 1. The model’s global thalamocortical geometry and white matter
anatomy was obtained by means of diffusion tensor imaging (DTI) of a normal
human brain. In the illustration, left frontal, parietal, and a part of temporal
cortex have been cut to show a small fraction of white-matter fibers, color-
coded according to their destination.

www.pnas.org"cgi"doi"10.1073"pnas.0712231105 PNAS ! March 4, 2008 ! vol. 105 ! no. 9 ! 3593–3598
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Izhikevich E. M. and Edelman G. M. (2008) “Large-Scale Model of Mammalian Thalamocortical Systems,”
PNAS, 105:3593-3598
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Biologically Motivated Model
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nb1 1.5
p2/3 L2/3

 L1
26

b2/3 3.1
nb2/3 4.2

ss4(L4) 9.2
ss4(L2/3) 9.2

p4 L4
 L2/3
 L1

9.2

b4 5.4
nb4 1.5

p5(L2/3) L5
 L4
 L2/3
 L1

4.8

p5(L5/6) L5
 L4
 L2/3
 L1

1.3

b5 0.6
nb5 0.8

p6(L4) L6
 L5
 L4
 L2/3

13.6

p6(L5/6) L6
 L5
 L4
 L2/3
 L1

4.5

b6 2
nb6 2

TCs 0.5
TCn 0.5
TIs 0.1
TIn 0.1

TRN 0.5

8890 10.1 6.3 0.6 1.1   .   . 0.1   .   . 0.1   .   .   .   .   .   .   .   . 4.1   .   .   .77.6
5800   . 59.9 9.1 4.4 0.6 6.9 7.7   . 0.8 7.4   .   .   . 2.3   .   . 0.8   .   .   .   .   .  .
1306 10.2 6.3 0.1 1.1   .   . 0.1   .   . 0.1   .   .   .   .   .   .   .   . 4.1   .   .   .78
3854 1.3 51.6 10.6 3.4 0.5 5.8 6.6   . 0.8 6.3   .   .   . 2.1   .   . 0.7   . 0.5   .   .   .9.8
3307 1.7 48.6 11.4 3.3 0.5 5.5 6.2   . 0.8 5.9   .   .   . 1.8   .   . 0.6   . 0.7   .   .   .13
5792   . 2.7 0.2 0.6 11.9 3.7 4.1 7.1 2 0.8 0.1   .   . 32.7   .   . 5.8 1.7 1.3   .   .   .25.3
4989   . 5.6 0.4 0.8 11.3 3.8 4.3 7.2 2.1 1.1 0.1   .   . 31.1   .   . 5.5 1.7 1.3   .   .   .23.9
5031   . 4.3 0.2 0.6 11.5 3.6 4.2 7.2 2.1 1.2 0.1   .   . 31.4 0.1   . 5.9 1.7 1.3   .   .   .24.5
866   . 63.1 5.1 4.1 0.6 7.2 8.1   . 0.6 7.8   .   .   . 2.5   .   . 0.8   .   .   .   .   .  .
806 10.2 6.3 0.1 1.1   .   . 0.1   .   . 0.1   .   .   .   .   .   .   .   . 4.1   .   .   .78
3230   . 5.8 0.5 0.8 11 3.8 4.2 8.4 2.4 1.1   .   .   . 30.3   .   . 5.4 1.6 1.2   .   .   .23.3
3688   . 2.7 0.2 0.6 11.7 3.6 4 8.2 2.3 0.8 0.1   .   . 32.2   .   . 5.7 1.7 1.3   .   .   .24.9
4316   . 45.9 1.8 0.3 3.3 2 7.5   . 0.9 11.7 1 0.8 1.1 2.3 2.1   . 11.5 0.1 0.4   .   .   .7.2
283   . 2.8 0.1 0.7 12.2 3.8 4.2 5.2 1.5 0.8 0.1   .   . 33.7   .   . 5.9 1.8 1.4   .   .   .26
412   . 63.1 5.1 4.1 0.6 7.2 8.1   . 0.6 7.8   .   .   . 2.5   .   . 0.8   .   .   .   .   .  .
185 10.2 6.3 0.1 1.1   .   . 0.1   .   . 0.1   .   .   .   .   .   .   .   . 4.1   .   .   .78
5101   . 44.3 1.7 0.2 3.2 2 7.3   . 0.8 11.3 1.2 0.8 1.1 2.3 2.5 0.3 11.3 0.2 0.5   .   .   .9.2
949   . 2.8 0.1 0.7 12.2 3.8 4.2 5.2 1.5 0.8 0.1   .   . 33.7   .   . 5.9 1.8 1.4   .   .   .26
1367   . 63.1 5.1 4.1 0.6 7.2 8.1   . 0.6 7.8   .   .   . 2.5   .   . 0.8   .   .   .   .   .  .
5658 10.2 6.3 0.1 1.1   .   . 0.1   .   . 0.1   .   .   .   .   .   .   .   . 4.1   .   .   .78
2981   . 45.5 2.3 0.2 3.3 2 7.5   . 1.1 11.6 1 0.9 1.3 2.3 2   . 11.4 0.1 0.4   .   .   .7.2
2981   . 45.5 2.3 0.2 3.3 2 7.5   . 1.1 11.6 1 0.9 1.3 2.3 2   . 11.4 0.1 0.4   .   .   .7.2
3261   . 2.5 0.1 0.1 0.7 0.9 1.3   . 0.1 0.1 4.9   . 0.3 1.2 13.2 7.7 7.7 0.6 2.9   .   .   .55.7
1066   . 46.8 0.8 0.3 3.4 2.1 7.7   . 0.6 11.9 1 0.6 0.8 2.3 2.1   . 11.7 0.1 0.4   .   .   .7.4
1915   . 2.8 0.1 0.7 12.2 3.8 4.2 5.2 1.5 0.8 0.1   .   . 33.7   .   . 5.9 1.8 1.4   .   .   .26
121   . 63.1 5.1 4.1 0.6 7.2 8.1   . 0.6 7.8   .   .   . 2.5   .   . 0.8   .   .   .   .   .  .
5573   . 2.5 0.1 0.1 0.7 0.9 1.3   . 0.1 0.1 4.9   . 0.3 1.2 13.2 7.8 7.8 0.6 2.9   .   .   .55.7
257   . 46.8 0.8 0.3 3.4 2.1 7.7   . 0.6 11.9 1 0.6 0.8 2.3 2.1   . 11.7 0.1 0.4   .   .   .7.4
243   . 2.8 0.1 0.7 12.2 3.8 4.2 5.2 1.5 0.8 0.1   .   . 33.7   .   . 5.9 1.8 1.4   .   .   .26
286   . 63.1 5.1 4.1 0.6 7.2 8.1   . 0.6 7.8   .   .   . 2.5   .   . 0.8   .   .   .   .   .  .
62 10.2 6.3 0.1 1.1   .   . 0.1   .   . 0.1   .   .   .   .   .   .   .   . 4.1   .   .   .78
3220   . 2.5 0.1 0.1 0.7 0.9 1.3   . 0.1 0.1 4.9   . 0.4 1.2 13.2 7.7 7.7 0.6 2.9   .   .   .55.7
3220   . 2.5 0.1 0.1 0.7 0.9 1.3   . 0.1 0.1 4.9   . 0.4 1.2 13.2 7.7 7.7 0.6 2.9   .   .   .55.7

4000 31   . 7.1   .   .   .   .   .   .   .   .   .   . 23 8   .   .   .   . 5   . 25.9  .
4000 31   . 7.1   .   .   .   .   .   . 14 3.8   .   .   . 13.2   .   .   .   .   . 5 25.9  .
3000 13.5   . 48.7  .   .   .   .   .   .   .   .   .   . 9.8 3.3   .   . 0.4   . 24.4   .   .  .
3000 13.4   . 48.7  .   .   .   .   .   . 5.8 1.6   .   .   . 5.4   .   .   . 0.6   . 24.4   .  .
4000 40   .   .   .   .   .   .   .   .   .   .   .   . 30   .   .   . 10 10   .   . 10  .
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Izhikevich E. M. and Edelman G. M. (2008) “Large-Scale Model of Mammalian Thalamocortical Systems,”
PNAS, 105:3593-3598
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Theorem

Let Gn ⇠ HSBM(✓).
Our goal is to consistently estimate ✓.

Theorem

Under suitable eigenvalue assumptions,

a three-step algorithm given by

1. cluster vertices � ASE(G) to estimate the Hr

2. cluster the collection {ASE(bHr)}
bR
r=1

3. estimate motif parameters for each cluster of subgraphs

yields

b✓n ! ✓ as n ! 1.
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Theorem

Let Gn ⇠ HSBM(✓).
Our goal is to consistently estimate ✓.

Theorem

Under suitable eigenvalue assumptions,

a three-step algorithm given by

1. cluster vertices � ASE(G) to estimate the Hr

2. cluster the collection {ASE(bHr)}
bR
r=1

3. estimate motif parameters for each cluster of subgraphs

yields

b✓n ! ✓ as n ! 1.

“In theory there is no di↵erence between theory and practice. In practice,

there is.” – Yogi Berra
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Open Source

• connectome data repository

• to make state-of-the-art neuroscience open and to facilitate
the analysis of connectome data

• collaboration with Harvard, HHMI’s Janelia Farm, etc.

•
http://www.openconnectomeproject.org

• subcontract to Harvard as a part of DARPA XDATA project

• distributing our graph inference methodologies
via “the network analysis package”

•
http://igraph.org

23 / 25
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Vision & Plans

Impact

Our work will provide pioneering robust inference capabilities for
cortical graphs which will in turn

1. impact the future of neuroscience through fundamental
insights into recurring motifs in the neocortex, and

2. impact the future of machine intelligence through estimates of
the structure of cortical computing primitives.

Furthermore, we expect our work to have major impact on the
burgeoning field of robust graph inference, and to unite the
nascent field of data science for graphs through a compelling and
high-profile application in the natural sciences.
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Leopold Kronecker to Hermann von Helmholtz (1888):

“The wealth of your practical experience

with sane and interesting problems

will give to mathematics

a new direction and a new impetus.”

Kronecker Helmholtz
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