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Motivation

Many contemporary theories of neural information processing
suggest that the neocortex employs algorithms composed of
repeated instances of a limited set of computing primitives.

There is a recognized need for tools for interrogating the structure
of the cortical microcircuits believed to embody these primitives.

Cortical Column Conjecture

Neurons are connected in a graph that exhibits motifs representing
repeated processing modules.

Q J. C. Horton and D. L. Adams. “The cortical column: a structure
without a function,” Philosophical Transactions of the Royal Society B,
360(1456):837-862, Apr. 2005.

Q V. Mountcastle. “The columnar organization of the neocortex,” Brain,
120(4):701-722, Apr. 1997.
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Fundamental Question

What are the relevant cortical computing structures associated
with recurring circuit motifs?

Goals

1. To obtain, and to understand the error characteristics of, an
observed cortical graph.

2. To develop, and to understand the theoretical & practical
properties of, general methodologies for end-to-end cortical
graph inference.

We aim to advance theoretical neuroscience, and impact
algorithms for machine intelligence, through insights derived from
high-fidelity reconstructions of cortical microcircuits; in particular,
we will estimate relevant cortical computing parameters from
observed cortical graphs.
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Science, April 25, 2014

Discovery of Brainwide Neural-Behavioral
Maps via Multiscale Unsupervised
Structure Learning

Joshua T. Vogelstein,™>* Youngser Park,** Tomoko Ohyama,* Rex A. Kerr,? James W. Truman,?
Carey E. Priebe,’t1 Marta Zlatic*t1

A single nervous system can generate many distinct motor patterns. Identifying which neurons and circuits
control which behaviors has been a laborious piecemeal process, usually for one observer-defined
behavior at a time. We present a fundamentally different approach to neuron-behavior mapping.
We optogenetically activated 1054 identified neuron lines in Drosophila larvae and tracked the
behavioral responses from 37,780 animals. Application of multiscale unsupervised structure learning
methods to the behavioral data enabled us to identify 29 discrete, statistically distinguishable,
observer-unbiased behavioral phenotypes. Mapping the neural lines to the behavior(s) they evoke
provides a behavioral reference atlas for neuron subsets covering a large fraction of larval neurons.
This atlas is a starting point for connectivity- and activity-mapping studies to further investigate the
mechanisms by which neurons mediate diverse behaviors.
Timothy O’Leary and Eve Marder, “Mapping Neural Activation onto Behavior in an Entire Animal,”
Science, April 25, 2014.
“(Authors) usher in a new era of integrated methods for deciphering how an entire nervous system
generates behavior... (They) have thus achieved a technical, multidisciplinary tour de force that will provide
a rich source of research questions.” 5 /25
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Figure 2. (f) Post-hoc human labels assigned to the automatically
detected behaviotype families and subfamilies. (e) Mean and standard
error of the responses of the eight behaviotype subfamilies.

\ Vogelstein et al, “Discovery of Brainwide Neural-Behavioral Maps via Multiscale Unsupervised Structure
Learning,” Science, vol. 344 no. 6182, 386-392, April 25, 2014.
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Figure 4. Examples of significant neuron lines and candidate neurons
involved in distinct behaviotypes.

Q Vogelstein et al, “Discovery of Brainwide Neural-Behavioral Maps via Multiscale Unsupervised Structure
Learning,” Science, vol. 344 no. 6182, 386-392, April 25, 2014.
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Adjacency Spectral Graph Embedding & Subsequent Inference

The eigendecomposition of an adjacency matrix provides a way to
embed a graph as points in finite dimensional Euclidean space.
This embedding allows the full arsenal of statistical and machine
learning methodology for multivariate Euclidean data to be
deployed for graph inference. Our work analyzes this embedding in
the context of various random graph models with a focus on the
impact for subsequent inference. In summary, this body of work
demonstrates that for a broad class of graph models and inference
tasks, adjacency spectral embedding allows for accurate graph
inference via standard multivariate methodology.

25
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(c) spectral embedding (d) spatial embedding

Q Takemura et al, “A visual motion detection circuit suggested by Drosophila connectomics,” Nature, 500,
175-181, August 8, 2013.

Vision & Plans
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D.L. Sussman, M. Tang, D.E. Fishkind, and C.E. Priebe, “A consistent adjacency spectral embedding for
stochastic blockmodel graphs,” Journal of the American Statistical Association, Vol. 107, No. 499, pp.
1119-1128, 2012.

D.E. Fishkind, D.L. Sussman, M. Tang, J.T. Vogelstein, and C.E. Priebe, “Consistent adjacency-spectral
partitioning for the stochastic block model when the model parameters are unknown,” SIAM JMAA, Vol.
34, No. 1, pp. 23-39, 2013.

V. Lyzinski, D.L. Sussman, M. Tang, A. Athreya, and C.E. Priebe, “Perfect Clustering for Stochastic
Blockmodel Graphs via Adjacency Spectral Embedding,” submitted for publication, 2013.

D.L. Sussman, M. Tang, and C.E. Priebe, “Consistent latent position estimation and vertex classification for
random dot product graphs,” IEEE TPAMI, Vol. 36, No. 1, pp. 48-57, 2014.

M. Tang, D.L. Sussman, and C.E. Priebe, “Universally consistent vertex classification for latent positions
graphs,” Annals of Statistics, Vol. 41, No. 3, pp. 1406-1430, 2013.

M. Tang, Y. Park, and C.E. Priebe, “Out-of-sample extension for latent position graphs,” submitted for
publication, 2013.

A. Athreya, V. Lyzinski, D.J. Marchette, C.E. Priebe, D.L. Sussman, and M. Tang, “A limit theorem for
scaled eigenvectors of random dot product graphs,” submitted for publication, 2013.

S. Suwan, D.S. Lee, R. Tang, D.L. Sussman, M. Tang, and C.E. Priebe, “Empirical Bayes Estimation for
the Stochastic Blockmodel,” submitted for publication, 2014.

M. Tang, A. Athreya, D.L. Sussman, V. Lyzinski, and C.E. Priebe, “Two-sample Hypothesis Testing for
Random Dot Product Graphs via Adjacency Spectral Embedding,” submitted for publication, 2014.
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Cortical Column Conjecture

The cortical column conjecture suggests that neurons in the
neocortex are connected in a graph that exhibits motifs
representing repeated processing modules.

Our focus is on extracting, and then estimating the structure of,
the cortical graph, for the purpose of subsequent modeling and
algorithm development.

11/25
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End-to-End Pipeline
for estimating cortical graph structure...

Image Compute Vision

... for the purpose of
subsequent modeling and algorithm development

Graph
Inference

12 /25
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e Cortical graph G:

hierarchical block model on
n vertices (neurons).

Induced subgraphs H,:
stochastic block models on
n, vertices, r=1,...,R.

. ldentify large-scale

structures in G — H,.

. ldentify clusters of the H's

corresponding to repeated
motifs.

. Estimate structural

parameters.

Plans

13 /25
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The Big Five Graph Inference Challenges

Clustering the vertices in a graph

Clustering a collection of graphs
Graph matching

Testing and estimation

@l o= e =

Robustness to errorfully observed graphs

All of these challenges must be addressed in the context of
available vertex- and edge-attributes — we will have neuron types
(excitatory, inhibitory), edge weights (synapse strengths), spatial
information, etc. The development of optimal robust
methodologies for attributed graphs presents significant additional
challenges.

14 /25
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From Images to Graphs to Inference

a goal of the computer vision is to reconstruct a graph
with error properties that the subsequent inference can tolerate ..."

(a) EM data (b) Segmentation
(Davi Bock, HHMI Janelia) (Hanspeter Pfister, Harvard)

‘ C.E. Priebe, D.L. Sussman, M. Tang, J.T. Vogelstein, “Statistical inference on errorfully observed graphs,”
Journal of Computational and Graphical Statistics, accepted for publication, 2014.

15/25
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Let Bk be the collection of symmetric K x K block-probability

matrices;
B :={B € [0, 1X*X|BT = By}.

Let M, g be the collection of length K non-negative integer-valued
vectors 7 with entries summing to 7;

K
My :=1{i € NX| 7 =n).
k=1

Given positive integers n and K, consider i € M, g and B € Bg.
We say a random graph G on vertex set V is a stochastic block
model graph G ~ SBM(V, i, B) if the vertices V are partitioned
into subsets V71, - -, Vx with sizes given by 7i = (71, - - - , fig) and
edges 1{u ~ v} are independent Bernoulli random variables with
Plu~v]=BjforueV;andveV;

16
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Given G = (V,E), where V = [n].
° {Vr}le: a disjoint partition of the vertices V, and for each
r=1,2,...,R, write n, := |V,|.
e H =Q(V,) = (V. E,).
e H, ~ SBM(V,, i, By), where m, € M,,, x and B, € Byg.
e foru € V, and v € Vv with r # 1/, 1{u ~ v} ~ Bernoulli(p).

G ~ HSBM(V, ifi, B), where i =[] | ] | - | #g]T and B is
given by
[ Bi plkx - Plkk]
B plkk B> :
- plk x
Plkx - pPlkk Br |

17 /25
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Our cortical graph G:
e 1 vertices, with n € {103, 10%, 10°, 10°}.
V = [n] is partitioned into R subsets {Vr}le.
H, = Q(V,) each have |V, =n, =m =100, K =5 blocks.
R=n/m.
m, = 2,50, 15,8,25] T Vr.

0.1 0.045 0.015 0.19 0
0.045 0.05 0.035 0.14 0.03
B, = |0.015 0.035 0.08 0.105 0.04
0.19 014 0105 029 0.13
0 0.03 0.04 013 0.09

e pc{1072,1073,1074,107°}.

Q Izhikevich E. M. and Edelman G. M. (2008) “Large-Scale Model of Mammalian Thalamocortical Systems,”
PNAS, 105:3593-3598

18 /25
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Biologically Motivated Model

Large-scale model of mammalian
thalamocortical systems

Eugene M. Izhikevich and Gerald M. Edelman*
The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121
Contributed by Gerald M. Edelman, December 27, 2007 (sent for review December 21, 2007)

The understanding of the structural and dynamic complexity of
mammalian brains is greatly facilitated by computer simulations.
We present here a detailed large-scale thalamocortical model
based on i in several ian species.
The model spans three anatomical scales. (i) It is based on global
(white-matter) thalamocortical anatomy obtained by means of
diffusion tensor imaging (DTI) of a human brain. (i) It includes
multiple thalamic nuclei and six-layered cortical microcircuitry
based on in vitro labeling and three-dimensional reconstruction of
single neurons of cat vnsual cortex. (m) It has 22 basic types. of
neurons with approp laminar of their

dendritic trees. The model si million i tmen-
tal spiking neurons calibrated to reproduce known types of re-
sponses recorded in vitro in rats. It has almost half a billion
synapses with appropnate receptor kinetics, short-term plasticity,
and long-t ynaptic plasticity
(dendritic STDP). The model exhlblts behavioral regimes of normal
brain activity that were not explicitly built-in but emerged spon-
taneously as the result of interactions among anatomical and
dynamic processes. We describe spontaneous activity, sensitivity
to changes in individual neurons, emergence of waves and

PNAS |

rhythms, and functional connectivity on different scales. Fig. 1. The model’s global thalamocortical geometry and white matter

anatomy was obtained by means of diffusion tensor imaging (DTI) of a normal
brain models | cerebral cortex | diffusion tensor imaging | oscillations | human brain. In the illustration, left frontal, parietal, and a part of temporal
spike-timing-dependent synaptic plasticity cortex have been cut to show a small fraction of white-matter fibers, color-

coded according to their destination.

\ Izhikevich E. M. and Edelman G. M. (2008) “Large-Scale Model of Mammalian Thalamocortical Systems,”

PNAS, 105:3593-3598

19/25
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Q Izhikevich E. M. and Edelman G. M. (2008) “Large-Scale Model of Mammalian Thalamocortical Systems,”
PNAS, 105:3593-3598
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Let G, ~ HSBM(6).
Our goal is to consistently estimate 9.

Theorem

Under suitable eigenvalue assumptions,
a three-step algorithm given by

1. cluster vertices o ASE(G) to estimate the H,
2. cluster the collection {ASE (Iflr)}f:1
3. estimate motif parameters for each cluster of subgraphs

yields §n — 0 asn — oo.

Plans

21/25
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Let G, ~ HSBM(6).
Our goal is to consistently estimate 0.

Under suitable eigenva
a three-step algorithm

1. cluster vertices o . he H,

2. cluster the collect
3. estimate motif pa. iter of subgraphs

yields §n — 0 asn — oo.

“In theory there is no difference between theory and practice. In practice,

there is.” — Yogi Berra
22/25
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CONNECT

connectome data repository

to make state-of-the-art neuroscience open and to facilitate
the analysis of connectome data

collaboration with Harvard, HHMI's Janelia Farm, etc.

http://www.openconnectomeproject.org

e subcontract to Harvard as a part of DARPA XDATA project

e distributing our graph inference methodologies
via “the network analysis package”

e http://igraph.org

23 /25


http://www.openconnectomeproject.org
http://igraph.org

Vision &

Impact

Our work will provide pioneering robust inference capabilities for
cortical graphs which will in turn

1. impact the future of neuroscience through fundamental
insights into recurring motifs in the neocortex, and

2. impact the future of machine intelligence through estimates of
the structure of cortical computing primitives.

Furthermore, we expect our work to have major impact on the
burgeoning field of robust graph inference, and to unite the
nascent field of data science for graphs through a compelling and
high-profile application in the natural sciences.

Plans

24 /25
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Leopold Kronecker to Hermann von Helmholtz (1888):

“The wealth of your practical experience
with sane and interesting problems
will give to mathematics
a new direction and a new impetus.”

Foorc

Kronecker Helmholtz

25 /25
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