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Definition

Let € be an LSM-regular curve of minimal subspace dimension d.
Let p(t) : [0,1] — C denote the arclength reparameterization of C.
Let G be a family of distributions on [0, 1], and let F denote the
induced distributions on €: that is, up(B) = ug(p~'(B)) for any set
B C @€, where ur and g are the distribution measures of
associated to F and G. We say that an RDPG with i.i.d. latent
position matrix X is a

latent structure random graph with parametric underlying
distribution G and known univariate support C

if the latent position vectors X; are distributed according to

F = G(p~') where G belongs to some regular parametric family
Go ={Gg:0€©® c R} on [0,1] and p and € are known.

We write

X; ~ F = Gg(p~1),0 € ©; suppF =C.
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Left: Unobserved density on [0, 1].
Center: Unobserved latent position density on C.
Right: Observed graph generated from latent positions on C.
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Let € be an LSM-regular curve of minimal subspace dimension d. Let p(t) : [0,1] — @ denote the arclength
reparameterization of C. Let G be a family of distributions on [0, 1], and let F denote the induced distributions on
C: that is, up(B) = ug (p*l (B)) for any set B C €, where pup and pg are the distribution measures of associated
to F and G. We say that an RDPG with i.i.d. latent position matrix X is a latent structure random graph with
parametric underlying distribution G and known univariate support € if the latent position vectors X; are
distributed according to F = G(pfl) where G belongs to some regular parametric family Gg ={Gg;0 € © C ]RI}
on [0,1] and p and € are known. We write

X; ~4 F=Gg(p~'),0 € ®; suppF = €.
latent structure random graph

with parametric/nonparametric underlying distribution G
and known/parametric/nonparametric support C



Asymptotic Efficiency in the Latent Structure Model
o ﬁ:ﬁﬁ((mg(‘)) b‘ a.e

» , /‘\ /?\\ >

2o kL A (7%,
& ) e e X \ %




http://arxiv.org/abs/1709.05454

Statistical inference on random dot product graphs: a survey

Avanti Athreya, Donniell E. Fishkind, Keith Levin, Vince Lyzinski, Youngser Park, Yichen Qin, Daniel L.
Sussman, Minh Tang, Joshua T. Vogelstein, Carey E. Priebe
(Submitted on 16 Sep 2017)

The random dot product graph (RDPC) is an independent-edge random graph that is analytically tractable and,
simultaneously, either encompasses or can successfully approximate a wide range of random graphs, from
relatively simple stochastic block models to complex latent position graphs. In this survey paper, we describe a
comprehensive paradigm for statistical inference on random dot product graphs, a paradigm centered on spectral
embeddings of adjacency and Laplacian matrices. We examine the analogues, in graph inference, of several
canonical tenets of classical Euclidean inference: in particular, we summarize a body of existing results on the
consistency and asymptotic normality of the adjacency and Laplacian spectral embeddings, and the role these
spectral embeddings can play in the construction of single- and multi-sample hypothesis tests for graph data. We
investigate several real-world applications, including community detection and classification in large social
networks and the determination of functional and biologically relevant network properties from an exploratory
data analysis of the Drosophila connectome. We outline requisite background and current open problems in
spectral graph inference.

Comments: An expository survey paper on a comprehensive paradigm for inference for random dot product graphs, centered
on graph adjacency and Laplacian spectral embeddings. Paper outlines requisite background; summarizes theory,
methodology, and applications from previous and ongoing work; and closes with a discussion of several open

problems
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We now describe a consistency result in the 2 — oo norm that
provides uniform control of deviations between the estimated and
true latent positions. This uniform control can matter significantly
for subsequent inference. An analogous result is available for much
more general random matrix perturbations.

Theorem (Lyzinski et al., IEEE TNSE, 2017; Cape et al.,

Annals of Statistics, forthcoming)

Let Ay ~RDPG(X;) forn > 1 be a sequence of random dot product graphs where the X;, is assumed to be of rank
d for all n sufficiently large. Let Py = XyX,| and let 5, = max; Z]- P, jj be the maximum expected degree. Denote

by X, the adjacency spectral embedding of A, and let (Xn ); and (Xp); be the i-th row of Xy and Xy, respectively.
Let E;; be the event that there exists an orthogonal transformation Wy € RY%4 sych that for some C > 0

Cd'/21og%n

max|| (X); = War (X )il| < pr

Then E; occurs asymptotically almost surely: P(E,) — 1.



Theorem (Lyzinski et al., IEEE TNSE, 2017; Cape et al.,

Annals of Statistics, forthcoming)

Let A,, ~ RDPG(X},) for n > 1 be a sequence of random dot
product graphs where the X,, is assumed to be of rank d for all n
sufficiently large. Let P, = X, X,] and let §,, = max; Zj Pn,ij be the
maximum expected degree. Denote by X, the adjacency spectral
embedding of A, and let (X,)); and (X,)); be the i-th row of X,, and
Xy, respectively. Let E;, be the event that there exists an
orthogonal transformation Wy, € R?*4 gych that for some C >0

R Cd'/2log*n
miax||(Xn)i—Wn(Xn)i|| < ng
n

Then E,, occurs asymptotically almost surely: P(E,;) — 1.



Having established that the estimated latent positions are
consistent in 2 — oo, we next point out that the latent position
estimates are asymptotically normal. Specifically, for a
d-dimensional random dot product graph with i.i.d. latent
positions, there exists a sequence of orthogonal matrices W,, such
that for any row index i, \/ﬁ(Wn()A(n)i — (X},);) converges to a
mixture of multivariate normals.

Theorem (Athreya et al., Sankhya, 2016)

Let (Ay,X;) ~RDPG(F) be a sequence of adjacency matrices and associated latent positions of a d-dimensional
random dot product graph according to an inner product distribution F. Let @ (x, X) denote the cdf of a
(multivariate) Gaussian with mean zero and covariance matrix , evaluated at x € R?. Then there exists a
sequence of orthogonal d-by-d matrices (Wy)5°_; such that for all z € RY and for any fixed index i,

Jim P [/ (W (%) = (Xn)j) <z 1 X; =] = @ (2, (%)),

where
I(x)= A~ lE [(XTX1 = (xTxl)ijlxﬂ AL A=EXX]1,X; ~F.



Theorem (Athreya et al., Sankhya, 2016)

Let (A;, X)) ~RDPG(F) be a sequence of adjacency matrices and
associated latent positions of a d-dimensional random dot product
graph according to an inner product distribution F. Let ®(x, X)
denote the cdf of a (multivariate) Gaussian with mean zero and
covariance matrix £, evaluated at x € R?. Then there exists a
sequence of orthogonal d-by-d matrices (W) ; such that for all
z € RY and for any fixed index i,

lim P [n!/2(Wa(Ra)i— (Xa)) <z | X; = x| = @ (z,Z(x)),

n—oo

where

I(x) = A lE [(XTX1 _ (xTxl)Z)Xlxﬂ AL A =EX;X{1,X; ~ F.



We now state our key empirical process result that provides us
uniform convergence of scaled sums of differences of functions of
estimated and true latent positions, provided the functions belong
to a sufficiently regular class.

We first recall certain definitions, which we reproduce from van der Vaart and Wellner. Let X;,1 <i < n be

identically distributed random variables on a measure space (X, B), and let Py be their associated empirical
measure; that is, Py is the discrete random measure defined, for any E € B, by

] n
Py(E) = > 1p(X)).
i=1

Let P denote the common distribution of the random variables X;, and suppose that J is a class of measurable,
real-valued functions on X. The F-indexed empirical process Gy is the stochastic process

£ Gulf) = VAi(Pa = P)f = = Y (F(X) ~ EF(X,1).
i=1

Under certain conditions, the empirical process {Gy (f) : f € F} can be viewed as a map into ¢*°(F), the collection
of all uniformly bounded real-valued functionals on F. In particular, let F be a class of functions for which the
empirical process G, = /n(Py — P) converges to a limiting process G where G is a tight Borel-measurable element
of £%°(F) (more specifically a Brownian bridge). Then J is said to be a P-Donsker class.



Theorem (Tang et al., Bernoulli, 2017)

Let (X;,A;) forn=1,2,..., be a sequence of d-dimensional RDPG(F).
Let F be a collection of (at least) twice continuously differentiable
functions on supp F with

sup [|()(X)]| < oo; sup [|(@°A)(X)] < oo.
feF Xesupp F feF XesuppF

Furthermore, suppose F is such that G, = /n(P, — P) converges to G, a
P—Brownian br/dge on €°° (3:) . Then there exists a sequence of orthogonal matrices Wy, such that
asn— oo,

sup ‘% lé (f(Wn)A(i) *f(Xi))‘ —0,

feF

where {5(1'}:":1 are the rows of 5(n. Therefore, the F-indexed empirical process

feFmGuf= 1 (f W) — EIf(X;)))

Vi

HI\’]:

also converges to G on (*°(F).



Theorem (Tang et al., Bernoulli, 2017)

Let (Xu,Ay) forn=1,2,..., be a sequence of d-dimensional RDPG(F). Let F be a collection of (at least) twice
continuously differentiable functions on supp F with

sup (A X)) < oo; sup  [[(2%)(X)] < co.
feTF XesuppF feTF XesuppF

Furthermore, suppose F is such that G, = \/n(P,, — P) converges to G, a P-Brownian bridge on £® (F). Then
there exists a sequence of orthogonal matrices W,, such that as n — oo,

sup \% g(f(wm —fX))| =0,

fex

where {)A(i}lf‘zl are the rows of )A(n. Therefore, the F-indexed empirical
process

A 1 & N
feFmbif=— ;(f(wnxi) —E[f(X,))

also converges to G on (> (F).



Theorem (Tang et al., Bernoulli, 2017)
[.]

sup ‘\}ﬁ iil(f(wnf(i) —f(Xi))‘ -0

fex

[.]

This theorem is in essence a functional central limit theorem for
the estimated latent positions {}A(i} in the RDPG setting, and we
emphasize that for any n, the {}A(i}?zl are not jointly independent
random variables, i.e., this is a functional central limit theorem for
dependent data. Due to the non-identifiability of random dot
product graphs, there is an explicit dependency on a sequence of
orthogonal matrices W;,. The main technical result from this
theorem is used to show the asymptotic normality of M-estimation
for the parameters of LSMs.



Theorem (Athreya et al., Statistical Science, forthcoming)

Suppose X; i.i.d. Fg, are latent positions of a latent structure
model satisfying the regularity assumptions delineated above. Let
A be the adjacency matrix of the random dot product with latent
positions X, and let X be the suitably-rotated adjacency spectral
embedding of A. Let 8y and 0 satisfy

Oumre = argmax() logg(p  (n(Xy)), ),
i=1

6= argmax(z logg(pfl(ﬂ(fii)), 0)).
i=1
Then
V(6 —89) — N(0, I (6p)).



Theorem (Athreya et al., Statistical Science, forthcoming)

Suppose X; i.i.d. Fg o are latent positions of a latent structure model satisfying the regularity assumptions

delineated above. Let A be the adjacency matrix of the random dot product with latent positions X, and let X be
the suitably-rotated adjacency spectral embedding of A. Let Oy and 6 satisfy

BpiE = argmax () logg(p ' (n(X;)), 0)),
i=1

6 = argmax()_ logg(p~(n(X;)), 0)).
i=1

Then
V(8 —8g) — N(0,I(89))-

Proof:

Observe that /(6 — 69) converges to a normal distribution
with mean zero and variance I=1(0y).

Thus, it remains to show that

V(@ —8pre) = 0

in probability . ..
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5.4.2 Asymptotic Normality of Minimum Contrast and
M-Estimates

Remark 5.4.2. Solutions to (5.4.20) are called M -estimates as well as estimating equation
estimates—see Section 2.2.1. Our arguments apply to M -estimates. Nothing in the argu-
ments require that #,, be a minimum contrast as well as an M-estimate (i.e., that 1 = %
for some p).
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Top: Unobserved density on [0, 1] and latent positions on C.
Center: Observed graph generated and adjacency matrix.
Bottom: Estimated latent positions around € and M-estimate.



n
0 = arg max > log go(pe' (me(X4)))
i=1

(MSE(a), MSE(D))

n = 1000 n = 8000

using X | (0.00068, 0.00280) | (0.00014,0.00097)

using X | (0.004,0.019) | (0.00015,0.00120)




Manifold Learning for Subsequent Inference:
Parametric Rate of Convergence
in the
Latent Structure Model




Manifold Learning for Subsequent Inference:
Beta(a =1,b=1) H-W LSM (n = 8000)
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0 = arg méiX Z log gg (pé1 (wc(Xl)))
i=1

MSE(a) | MSE(b)
using X and € | 0.00015 | 0.00008
using X and € | 0.00023 | 0.00010
using X and ¢ | 0.0011 | 0.0011




e G parametric & € {known ; parametric}
above: theory & simulation

e G nonparametric & € {known ; parametric ; nonparametric}
simulation results:

Density

p-value

e G nonparametric & € nonparametric
below: real data = connectome re bilateral homology



Yogi Berra (purportedly):

“In theory there is no difference between theory and practice.
In practice, there is.”

(cf. “That’s all well and good in practice, but how does it work in theory?”)
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scanning electron microscope image of a Drosophila larva face
(Tigran Norekian @ Friday Harbor Lab,
in collaboration with Ben Cocanougher & Leonid Moroz)
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The complete connectome of a learning
and memory centre in an insect brain

Katharina Eichler, Feng Li, Ashok Litwin-Kumar, Youngser Park, Ingrid Andrade, Casey M. Schneider-
Mizell, Timo Saumweber, Annina Huser, Claire Eschbach, Bertram Gerber, Richard D. Fetter, James
W. Truman, Carey E. Priebe, L. F. Abbott , Andreas S. Thum , Marta Zlatic ™ & Albert Cardona

Nature 548, 175-182 (10 August 2017) ~ Download Citation ¥
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Top: Estimated structural support.
Center: Projection onto this estimated support.
Bottom: Density estimates for the underlying distribution.



Purpose of work from the perspective of a biologist:

The mushroom body is the seat of memory for the Drosophila
larva. The structure of this portion of the brain is well studied. It
is assumed that the left and right side of the mushroom body are
bilaterally homologous, that is, for each neuron that appears in the
mushroom body on the left, there is an equivalent and mirror
symmetrical neuron on the right in function and morphology. In
practice, such perfect symmetry is not observed, but this is
believed to be due to developmental history (small differences in
environment experienced by each neuron in the animal and at a
larger scale by the experience of each animal, which influence
neural structure and connectivity).

The conjecture that the left and right side are equivalent is a convenience that doesn't prevent restful sleep for
neuroscientists but does keep statisticians up at night. Testing whether the left and right side are truly structurally
similar is, mathematically, a difficult problem. Furthermore, in order to detect changes in the left and right side of a

mushroom body (in the case, for example, where a memory is written into the left but not right side of a brain and
needs to be detected), a hypothesis test needs to be developed and implemented.



Purpose of work from the perspective of a biologist:

The mushroom body is the seat of memory for the Drosophila larva. The structure of this portion of the brain is
well studied. It is assumed that the left and right side of the mushroom body are bilaterally homologous, that is,
for each neuron that appears in the mushroom body on the left, there is an equivalent and mirror symmetrical
neuron on the right in function and morphology. In practice, such perfect symmetry is not observed, but this is
believed to be due to developmental history (small differences in environment experienced by each neuron in the
animal and at a larger scale by the experience of each animal, which influence neural structure and connectivity).

The conjecture that the left and right side are equivalent is a
convenience that doesn't prevent restful sleep for neuroscientists
but does keep statisticians up at night. Testing whether the left
and right side are truly structurally similar is, mathematically, a
difficult problem. Furthermore, in order to detect changes in the
left and right side of a mushroom body (in the case, for example,
where a memory is written into the left but not right side of a
brain and needs to be detected), a hypothesis test needs to be
developed and implemented.
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Center: Projection onto this estimated support.
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Bottom: Density estimates for the underlying distribution



Purpose of work from the perspective of a biologist:

The mushroom body is the seat of memory for the Drosophila larva. The structure of this portion of the brain is
well studied. It is assumed that the left and right side of the mushroom body are bilaterally homologous, that is,
for each neuron that appears in the mushroom body on the left, there is an equivalent and mirror symmetrical
neuron on the right in function and morphology. In practice, such perfect symmetry is not observed, but this is
believed to be due to developmental history (small differences in environment experienced by each neuron in the
animal and at a larger scale by the experience of each animal, which influence neural structure and connectivity).
The conjecture that the left and right side are equivalent is a convenience that doesn’t prevent restful sleep for
neuroscientists but does keep statisticians up at night. Testing whether the left and right side are truly structurally
similar is, mathematically, a difficult problem. Furthermore, in order to detect changes in the left and right side of a
mushroom body (in the case, for example, where a memory is written into the left but not right side of a brain and
needs to be detected), a hypothesis test needs to be developed and implemented.

In summary, this LSM work promises two neuroscience advances.
First, it gives mathematical grounding to the belief that the left
and right hemisphere of the mushroom body consist of bilaterally
homologous neurons.

Second, it provides a suitable hypothesis test for future
experiments in which the structure of the mushroom body is
altered by experience (such as the storage of long term memory
which differently affects structure on the left and right side).
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Leopold Kronecker to Hermann von Helmholtz (1888):

“The wealth of your practical experience
with sane and interesting problems
will give to mathematics
a new direction and a new impetus.”

Geerece s

Kronecker Helmholtz





