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Latent Structure Model
Definition

Let C be an LSM-regular curve of minimal subspace dimension d.
Let p(t) : [0, 1]→ C denote the arclength reparameterization of C.
Let G be a family of distributions on [0, 1], and let F denote the
induced distributions on C: that is, µF(B) = µG(p−1(B)) for any set
B ⊂ C, where µF and µG are the distribution measures of
associated to F and G. We say that an RDPG with i.i.d. latent
position matrix X is a

latent structure random graph with parametric underlying
distribution G and known univariate support C

if the latent position vectors Xi are distributed according to
F = G(p−1) where G belongs to some regular parametric family
GΘ = {Gθ; θ ∈ Θ ⊂ Rl} on [0, 1] and p and C are known.
We write

Xi ∼
i.i.d. F = Gθ(p−1), θ ∈ Θ; supp F = C.
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Left: Unobserved density on [0, 1].
Center: Unobserved latent position density on C.
Right: Observed graph generated from latent positions on C.
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Latent Structure Model

Definition
Let C be an LSM-regular curve of minimal subspace dimension d. Let p(t) : [0, 1]→ C denote the arclength
reparameterization of C. Let G be a family of distributions on [0, 1], and let F denote the induced distributions on
C: that is, µF(B) = µG(p−1(B)) for any set B ⊂ C, where µF and µG are the distribution measures of associated
to F and G. We say that an RDPG with i.i.d. latent position matrix X is a latent structure random graph with
parametric underlying distribution G and known univariate support C if the latent position vectors Xi are

distributed according to F = G(p−1) where G belongs to some regular parametric family GΘ = {Gθ;θ ∈ Θ ⊂ Rl}
on [0, 1] and p and C are known. We write

Xi ∼
i.i.d. F = Gθ(p−1),θ ∈ Θ; supp F = C.

latent structure random graph
with parametric/nonparametric underlying distribution G

and known/parametric/nonparametric support C



Asymptotic Efficiency in the Latent Structure Model



Adjacency Spectral Embedding
http://arxiv.org/abs/1709.05454

(Journal of Machine Learning Research)

http://arxiv.org/abs/1709.05454


Theorem 1

We now describe a consistency result in the 2→∞ norm that
provides uniform control of deviations between the estimated and
true latent positions. This uniform control can matter significantly
for subsequent inference. An analogous result is available for much
more general random matrix perturbations.

Theorem (Lyzinski et al., IEEE TNSE, 2017; Cape et al.,
Annals of Statistics, forthcoming)
Let An ∼ RDPG(Xn) for n > 1 be a sequence of random dot product graphs where the Xn is assumed to be of rank
d for all n sufficiently large. Let Pn = XnX>n and let δn = maxi

∑
j Pn,ij be the maximum expected degree. Denote

by X̂n the adjacency spectral embedding of An and let (X̂n)i and (Xn)i be the i-th row of X̂n and Xn, respectively.

Let En be the event that there exists an orthogonal transformation Wn ∈ Rd×d such that for some C > 0

max
i
‖(X̂n)i − Wn(Xn)i‖ 6

Cd1/2 log2 n

δ
1/2
n

.

Then En occurs asymptotically almost surely: P(En)→ 1.
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Theorem (Lyzinski et al., IEEE TNSE, 2017; Cape et al.,
Annals of Statistics, forthcoming)

Let An ∼ RDPG(Xn) for n > 1 be a sequence of random dot
product graphs where the Xn is assumed to be of rank d for all n
sufficiently large. Let Pn = XnX>n and let δn = maxi

∑
j Pn,ij be the

maximum expected degree. Denote by X̂n the adjacency spectral
embedding of An and let (X̂n)i and (Xn)i be the i-th row of X̂n and
Xn, respectively. Let En be the event that there exists an
orthogonal transformation Wn ∈ Rd×d such that for some C > 0

max
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‖(X̂n)i − Wn(Xn)i‖ 6

Cd1/2 log2 n

δ
1/2
n

.

Then En occurs asymptotically almost surely: P(En)→ 1.



Theorem 2

Having established that the estimated latent positions are
consistent in 2→∞, we next point out that the latent position
estimates are asymptotically normal. Specifically, for a
d-dimensional random dot product graph with i.i.d. latent
positions, there exists a sequence of orthogonal matrices Wn such
that for any row index i,

√
n(Wn(X̂n)i − (Xn)i) converges to a

mixture of multivariate normals.

Theorem (Athreya et al., Sankhya, 2016)
Let (An, Xn) ∼ RDPG(F) be a sequence of adjacency matrices and associated latent positions of a d-dimensional
random dot product graph according to an inner product distribution F. Let Φ(x,Σ) denote the cdf of a

(multivariate) Gaussian with mean zero and covariance matrix Σ, evaluated at x ∈ Rd. Then there exists a

sequence of orthogonal d-by-d matrices (Wn)∞n=1 such that for all z ∈ Rd and for any fixed index i,

lim
n→∞P

[
n1/2(Wn(X̂n)i −(Xn)i) 6 z | Xi = x

]
=Φ (z,Σ(x)) ,

where
Σ(x) = ∆−1E

[
(x>X1 −(x>X1)

2)X1X>1
]
∆−1,∆ = E[X1X>1 ], X1 ∼ F.
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Theorem (Athreya et al., Sankhya, 2016)

Let (An, Xn) ∼ RDPG(F) be a sequence of adjacency matrices and
associated latent positions of a d-dimensional random dot product
graph according to an inner product distribution F. Let Φ(x,Σ)
denote the cdf of a (multivariate) Gaussian with mean zero and
covariance matrix Σ, evaluated at x ∈ Rd. Then there exists a
sequence of orthogonal d-by-d matrices (Wn)

∞
n=1 such that for all

z ∈ Rd and for any fixed index i,

lim
n→∞ P

[
n1/2(Wn(X̂n)i − (Xn)i) 6 z | Xi = x

]
= Φ (z,Σ(x)) ,

where

Σ(x) = ∆−1E
[
(x>X1 − (x>X1)

2)X1X>1
]
∆−1,∆ = E[X1X>1 ], X1 ∼ F.



Theorem 3

We now state our key empirical process result that provides us
uniform convergence of scaled sums of differences of functions of
estimated and true latent positions, provided the functions belong
to a sufficiently regular class.

We first recall certain definitions, which we reproduce from van der Vaart and Wellner. Let Xi, 1 6 i 6 n be
identically distributed random variables on a measure space (X,B), and let Pn be their associated empirical
measure; that is, Pn is the discrete random measure defined, for any E ∈ B, by

Pn(E) =
1
n

n∑
i=1

1E(Xi).

Let P denote the common distribution of the random variables Xi, and suppose that F is a class of measurable,
real-valued functions on X. The F-indexed empirical process Gn is the stochastic process

f 7→ Gn(f) =
√

n(Pn − P)f =
1√
n

n∑
i=1

(
f(Xi)− E[f(Xi)]

)
.

Under certain conditions, the empirical process {Gn(f) : f ∈ F} can be viewed as a map into `∞(F), the collection
of all uniformly bounded real-valued functionals on F. In particular, let F be a class of functions for which the
empirical process Gn =

√
n(Pn − P) converges to a limiting process G where G is a tight Borel-measurable element

of `∞(F) (more specifically a Brownian bridge). Then F is said to be a P-Donsker class.



Theorem 3

Theorem (Tang et al., Bernoulli, 2017)

Let (Xn, An) for n = 1, 2, . . . , be a sequence of d-dimensional RDPG(F).
Let F be a collection of (at least) twice continuously differentiable
functions on supp F with

sup
f∈F,X∈supp F

‖(∂f )(X)‖ <∞; sup
f∈F,X∈supp F

‖(∂2f )(X)‖ <∞.

Furthermore, suppose F is such that Gn =
√

n(Pn − P) converges to G, a
P-Brownian bridge on `∞(F). Then there exists a sequence of orthogonal matrices Wn such that
as n→∞,

sup
f∈F

∣∣∣ 1√
n

n∑
i=1

(
f(WnX̂i)− f(Xi)

)∣∣∣→ 0,

where {X̂i}
n
i=1 are the rows of X̂n. Therefore, the F-indexed empirical process

f ∈ F 7→ Ĝnf =
1√
n

n∑
i=1

(
f(WnX̂i)− E[f(Xi)]

)

also converges to G on `∞(F).
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Theorem (Tang et al., Bernoulli, 2017)
Let (Xn, An) for n = 1, 2, . . . , be a sequence of d-dimensional RDPG(F). Let F be a collection of (at least) twice
continuously differentiable functions on supp F with

sup
f∈F,X∈supp F

‖(∂f)(X)‖ <∞; sup
f∈F,X∈supp F

‖(∂2f)(X)‖ <∞.

Furthermore, suppose F is such that Gn =
√

n(Pn −P) converges to G, a P-Brownian bridge on `∞(F). Then
there exists a sequence of orthogonal matrices Wn such that as n→∞,

sup
f∈F

∣∣∣ 1√
n

n∑
i=1

(
f (WnX̂i) − f (Xi)

)∣∣∣→ 0,

where {X̂i}
n
i=1 are the rows of X̂n. Therefore, the F-indexed empirical

process

f ∈ F 7→ Ĝnf =
1√
n

n∑
i=1

(
f (WnX̂i) − E[f (Xi)]

)
also converges to G on `∞(F).



Theorem 3

Theorem (Tang et al., Bernoulli, 2017)

[...]

sup
f∈F

∣∣∣ 1√
n

n∑
i=1

(
f (WnX̂i) − f (Xi)

)∣∣∣→ 0

[...]

This theorem is in essence a functional central limit theorem for
the estimated latent positions {X̂i} in the RDPG setting, and we
emphasize that for any n, the {X̂i}

n
i=1 are not jointly independent

random variables, i.e., this is a functional central limit theorem for
dependent data. Due to the non-identifiability of random dot
product graphs, there is an explicit dependency on a sequence of
orthogonal matrices Wn. The main technical result from this
theorem is used to show the asymptotic normality of M-estimation
for the parameters of LSMs.



Main Result: Theorem 4

Theorem (Athreya et al., Statistical Science, forthcoming)

Suppose Xi i.i.d. Fθ0 are latent positions of a latent structure
model satisfying the regularity assumptions delineated above. Let
A be the adjacency matrix of the random dot product with latent
positions X, and let X̂ be the suitably-rotated adjacency spectral
embedding of A. Let θ̂MLE and θ̂ satisfy

θ̂MLE = arg max(
n∑

i=1

log g(p−1(π(Xi)), θ)),

θ̂ = arg max(
n∑

i=1

log g(p−1(π(X̂i)), θ)).

Then √
n(θ̂− θ0)→ N(0, I−1(θ0)).



Main Result: Theorem 4

Theorem (Athreya et al., Statistical Science, forthcoming)
Suppose Xi i.i.d. Fθ0

are latent positions of a latent structure model satisfying the regularity assumptions

delineated above. Let A be the adjacency matrix of the random dot product with latent positions X, and let X̂ be
the suitably-rotated adjacency spectral embedding of A. Let θ̂MLE and θ̂ satisfy

θ̂MLE = arg max(
n∑

i=1
log g(p−1(π(Xi)),θ)),

θ̂ = arg max(
n∑

i=1
log g(p−1(π(X̂i)),θ)).

Then √
n(θ̂−θ0)→N(0, I−1(θ0)).

Proof:
Observe that

√
n(θ̂MLE − θ0) converges to a normal distribution

with mean zero and variance I−1(θ0).
Thus, it remains to show that

√
n(θ̂− θ̂MLE)→ 0

in probability . . .
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Top: Unobserved density on [0, 1] and latent positions on C.
Center: Observed graph generated and adjacency matrix.
Bottom: Estimated latent positions around C and M-estimate.



Asymptotic Efficiency in the Latent Structure Model
Beta(a = 1, b = 2) H-W LSM

(MSE(â), MSE(b̂))

n = 1000 n = 8000
using X (0.00068, 0.00280) (0.00014,0.00097)

using X̂ (0.004,0.019) (0.00015,0.00120)
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Manifold Learning for Subsequent Inference:
Parametric Rate of Convergence

in the
Latent Structure Model



Manifold Learning for Subsequent Inference:
Beta(a = 1, b = 1) H-W LSM (n = 8000)

MSE(â) MSE(b̂)

using X and C 0.00015 0.00008

using X̂ and C 0.00023 0.00010

using X̂ and Ĉ 0.0011 0.0011



two-sample testing
• G parametric & C {known ; parametric}

above: theory & simulation

• G nonparametric & C {known ; parametric ; nonparametric}
simulation results:

p-value
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• G nonparametric & C nonparametric
below: real data = connectome re bilateral homology



Yogi Berra (purportedly):

“In theory there is no difference between theory and practice.
In practice, there is.”

(cf. “That’s all well and good in practice, but how does it work in theory?”)



scanning electron microscope image of a Drosophila larva face
(Tigran Norekian @ Friday Harbor Lab,

in collaboration with Ben Cocanougher & Leonid Moroz)



Connectome



Bilateral Homology
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Top: Estimated structural support.
Center: Projection onto this estimated support.
Bottom: Density estimates for the underlying distribution.



Bilateral Homology
left hemisphere KC right hemisphere KC
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Purpose of work from the perspective of a biologist:
The mushroom body is the seat of memory for the Drosophila
larva. The structure of this portion of the brain is well studied. It
is assumed that the left and right side of the mushroom body are
bilaterally homologous, that is, for each neuron that appears in the
mushroom body on the left, there is an equivalent and mirror
symmetrical neuron on the right in function and morphology. In
practice, such perfect symmetry is not observed, but this is
believed to be due to developmental history (small differences in
environment experienced by each neuron in the animal and at a
larger scale by the experience of each animal, which influence
neural structure and connectivity).
The conjecture that the left and right side are equivalent is a convenience that doesn’t prevent restful sleep for
neuroscientists but does keep statisticians up at night. Testing whether the left and right side are truly structurally
similar is, mathematically, a difficult problem. Furthermore, in order to detect changes in the left and right side of a
mushroom body (in the case, for example, where a memory is written into the left but not right side of a brain and
needs to be detected), a hypothesis test needs to be developed and implemented.



Bilateral Homology
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Purpose of work from the perspective of a biologist:
The mushroom body is the seat of memory for the Drosophila larva. The structure of this portion of the brain is
well studied. It is assumed that the left and right side of the mushroom body are bilaterally homologous, that is,
for each neuron that appears in the mushroom body on the left, there is an equivalent and mirror symmetrical
neuron on the right in function and morphology. In practice, such perfect symmetry is not observed, but this is
believed to be due to developmental history (small differences in environment experienced by each neuron in the
animal and at a larger scale by the experience of each animal, which influence neural structure and connectivity).

The conjecture that the left and right side are equivalent is a
convenience that doesn’t prevent restful sleep for neuroscientists
but does keep statisticians up at night. Testing whether the left
and right side are truly structurally similar is, mathematically, a
difficult problem. Furthermore, in order to detect changes in the
left and right side of a mushroom body (in the case, for example,
where a memory is written into the left but not right side of a
brain and needs to be detected), a hypothesis test needs to be
developed and implemented.
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Top: Estimated structural support.
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Center: Projection onto this estimated support.
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Bottom: Density estimates for the underlying distribution.



Bilateral Homology
left hemisphere KC right hemisphere KC

−1.2 −0.9 −0.6 −0.3 0.0 −1.2 −0.9 −0.6 −0.3 0.0

−0.5

0.0

0.5

1.0

X1

X
2

●
●●
●

●

●
●●●●●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●
●●●●●

●
●

●
●

●●●●●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●●
●●●

●●

●

●

●
●●●●

left hemisphere KC right hemisphere KC

−1.2 −0.8 −0.4 0.0 −1.2 −0.8 −0.4 0.0

−0.5

0.0

0.5

1.0

X1

X
2

left hemisphere KC right hemisphere KC

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

1

2

value

de
ns

ity

Purpose of work from the perspective of a biologist:
The mushroom body is the seat of memory for the Drosophila larva. The structure of this portion of the brain is
well studied. It is assumed that the left and right side of the mushroom body are bilaterally homologous, that is,
for each neuron that appears in the mushroom body on the left, there is an equivalent and mirror symmetrical
neuron on the right in function and morphology. In practice, such perfect symmetry is not observed, but this is
believed to be due to developmental history (small differences in environment experienced by each neuron in the
animal and at a larger scale by the experience of each animal, which influence neural structure and connectivity).
The conjecture that the left and right side are equivalent is a convenience that doesn’t prevent restful sleep for
neuroscientists but does keep statisticians up at night. Testing whether the left and right side are truly structurally
similar is, mathematically, a difficult problem. Furthermore, in order to detect changes in the left and right side of a
mushroom body (in the case, for example, where a memory is written into the left but not right side of a brain and
needs to be detected), a hypothesis test needs to be developed and implemented.

In summary, this LSM work promises two neuroscience advances.
First, it gives mathematical grounding to the belief that the left
and right hemisphere of the mushroom body consist of bilaterally
homologous neurons.
Second, it provides a suitable hypothesis test for future
experiments in which the structure of the mushroom body is
altered by experience (such as the storage of long term memory
which differently affects structure on the left and right side).
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Key Contribution 1: Latent Structure Model
Key Contribution 2: 2→∞ & Donsker CLT =⇒ Efficiency
Key Contribution 3: Manifold Learning for Subsequent Inference
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Leopold Kronecker to Hermann von Helmholtz (1888):

“The wealth of your practical experience
with sane and interesting problems

will give to mathematics
a new direction and a new impetus.”

Kronecker Helmholtz




