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Motivation

Many contemporary theories of neural information processing
suggest that the neocortex employs algorithms composed of
repeated instances of a limited set of computing primitives.

There is a recognized need for tools for interrogating the structure
of the cortical microcircuits believed to embody these primitives.
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Introduction

Cortical Column Conjecture

Neurons are connected in a graph that exhibits motifs representing
repeated processing modules (Horton & Adams, 2005;
Mountcastle, 1997).

Question
• Can we test whether an observed cortical graph satisfies the

conjecture?
• Can we estimate relevant cortical computing parameters from

an observed cortical graph?

Goal
To present a notional demonstration of how statistical inference on
graphs can inform our understanding of cortical computing.

J. C. Horton and D. L. Adams. “The cortical column: a structrue without a function,” Philosophical
transactions of the royal society B, 360(1456):837-862, Apr. 2005.

V. Mountcastle. “The columnar organization of the neocortex,” Brain, 120(4):701-722, Apr. 1997.
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Cortical Column Conjecture
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Cortical Column Graph
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Q: repeated motifs?

cortical

column

graph
G

n vertices
R motifs

nr vertices
motif
Hr = Ω(Vr)

• cortical graph G:
hierarchical block model on
n vertices (neurons).

• induced subgraph Hr:
stochastic block models on
nr, r = 1, . . . , R .

1. identify large-scale
structures in G → Hr,

2. test if Ĥr’s correspond to
repeated motifs.
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Stochastic Block Model

Let BK be the collection of symmetric K×K block-probability
matrices;

BK := {B ∈ [0, 1]K×K|BT = B}.

Let Mn,K be the collection of length K non-negative integer-valued
vectors ~n with entries summing to n;

Mn,K := {~n ∈NK|

K∑
k=1

~nk = n}.

Given positive integers n and K, consider ~n ∈Mn,K and B ∈ BK.
We say a random graph G on vertex set V is a stochastic block
model graph G ∼ SBM(V,~n, B) if the vertices V are partitioned
into subsets V1, · · · , VK with sizes given by ~n = (~n1, · · · ,~nK) and
edges 1{u ∼ v} are independent Bernoulli random variables with
P[u ∼ v] = Bij for u ∈ Vi and v ∈ Vj.
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Hierarchical Stochastic Block Model

Given G = (V, E), where V = [n],

• {Vr}
R
r=1: a disjoint partition of the vertices V, and for each

r = 1, 2, . . . , R, write nr := |Vr|.

• Hr = Ω(Vr) = (Vr, Er).

• Hr ∼ SBM(Vr, ~mr, Br), where ~mr ∈Mnr,K and Br ∈ BK.

• for u ∈ Vr and v ∈ Vr ′ with r 6= r ′, 1{u ∼ v} ∼ Bernoulli(p).

G ∼ HSBM(V, ~m, B), where ~m = [~m>1 | ~m>2 | · · · | ~m>R ]> and B is
given by

B =


B1 pJK,K · · · pJK,K

pJK,K B2
. . .

...

...
. . .

. . . pJK,K

pJK,K · · · pJK,K BR

 .
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Hypothesis
Given generating block-probability matrix B∗ ∈ BK and ε ∈ [0, 1],

we let Br
iid
∼ FB∗,ε where FB∗,ε specifies mutually independent

entries with
Br,ij ∼ Uniform(B∗ij ± εūij)

for i 6 j (recall symmetry of Br). Here ūij = min{B∗ij, 1 − B∗ij} is the
maximum allowable range guaranteeing that the random variable
Br,ij stays in [0, 1].
Hypotheses of interest are given by

H0 : ε > ε0

versus
HA : ε < ε0

with ε0 ∈ (0, 1]. A smaller value of ε corresponds to motifs having
more coherent structure.
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Biologically Motivated Model

Our cortical graph G:

• n vertices, with n ∈ {103, 104, 105, 106}.

• V = [n] is partitioned into R subsets {Vr}
R
r=1.

• Hr = Ω(Vr) each have |Vr| = nr = m = 100, K = 5 blocks.

• R = n/m.

• ~mr = [2, 50, 15, 8, 25]> ∀r.

•

B∗ =


0.1 0.045 0.015 0.19 0

0.045 0.05 0.035 0.14 0.03
0.015 0.035 0.08 0.105 0.04
0.19 0.14 0.105 0.29 0.13

0 0.03 0.04 0.13 0.09

 .

• p ∈ {10−2, 10−3, 10−4, 10−5}.

Izhikevich E. M. and Edelman G. M. (2008) “Large-Scale Model of Mammalian Thalamocortical Systems,”
PNAS, 105:3593-3598
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Large-scale model of mammalian
thalamocortical systems
Eugene M. Izhikevich and Gerald M. Edelman*

The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121

Contributed by Gerald M. Edelman, December 27, 2007 (sent for review December 21, 2007)

The understanding of the structural and dynamic complexity of
mammalian brains is greatly facilitated by computer simulations.
We present here a detailed large-scale thalamocortical model
based on experimental measures in several mammalian species.
The model spans three anatomical scales. (i) It is based on global
(white-matter) thalamocortical anatomy obtained by means of
diffusion tensor imaging (DTI) of a human brain. (ii) It includes
multiple thalamic nuclei and six-layered cortical microcircuitry
based on in vitro labeling and three-dimensional reconstruction of
single neurons of cat visual cortex. (iii) It has 22 basic types of
neurons with appropriate laminar distribution of their branching
dendritic trees. The model simulates one million multicompartmen-
tal spiking neurons calibrated to reproduce known types of re-
sponses recorded in vitro in rats. It has almost half a billion
synapses with appropriate receptor kinetics, short-term plasticity,
and long-term dendritic spike-timing-dependent synaptic plasticity
(dendritic STDP). The model exhibits behavioral regimes of normal
brain activity that were not explicitly built-in but emerged spon-
taneously as the result of interactions among anatomical and
dynamic processes. We describe spontaneous activity, sensitivity
to changes in individual neurons, emergence of waves and
rhythms, and functional connectivity on different scales.

brain models ! cerebral cortex ! diffusion tensor imaging ! oscillations !
spike-timing-dependent synaptic plasticity

The last decade has seen great progress in our understanding
of brain dynamics and underlying neuronal mechanisms.

Linking these mechanisms to behavior such as perception is
facilitated by large-scale computer simulations of anatomically
detailed models of the cerebral cortex (1–3). Although these
models have stressed microcircuitry and local dynamics, they
have not incorporated multiple cortical regions, corticocortical
connections, and synaptic plasticity. In the present article, we
describe a large-scale model of the mammalian thalamocortical
system that includes these components.

Spatiotemporal dynamics of the simulation show that some
features of normal brain activity, although not explicitly built into
the model, emerged spontaneously. The model exhibited self-
sustained activity in the absence of any external sources of input.
The behavior of the model was extremely sensitive to contributions
of individual spikes: adding or removing one spike of one neuron
completely changed the state of the entire cortex in !0.5 s. Regions
of the model brain exhibited collective waves and oscillations of
local field potentials in the delta, alpha, and beta ranges, similar to
those recorded in humans (4). Simulated fMRI signals exhibited
slow fronto-parietal anti-phase oscillations, as seen in humans (5).

The shape and connectivity of the model were determined by
diffusion tensor imaging (DTI) data for a human brain. Experi-
mental data from three species, human, cat, and rat, were incor-
porated to build other details of the model.

Model Structure. Here, we review some of the basic assumptions
used to construct the model, summarized in Figs. 1–3. A full
description is provided in supporting information (SI) Appendix.

For computational reasons, the density of neurons and synapses
per mm2 of cortical surface was necessarily reduced. Accordingly,

the model neurons have fewer synapses and less detailed dendritic
trees than those of real cortical neurons. Although we do not
explicitly model subcortical structures other than the thalamus, we
do simulate brainstem neuromodulation, including the dopaminer-
gic reward system (6, 7) and the cholinergic activating system.
Developmental changes, other than activity-dependent fine-tuning
of connectivity due to dendritic STDP, are also not modeled
explicitly.

Macroscopic Anatomy. Diffusion tensor imaging (DTI) data derived
from magnetic resonance imaging (MRI) of a human brain was
used to identify the coordinates of the cortical surface to allocate
cell bodies of model neurons at appropriate locations. Conse-
quently, the model reflects all areas of the human cortex, the folded
cortical structure with sulci and gyri. The DTI data, analyzed using
the ‘‘TensorLine’’ algorithm (8, 9), formed the white matter tracts
of the model, portions of which are illustrated in Fig. 1, that connect
individual neurons in one area with target neurons in other areas.

So that neuronal density approached that of animal cortices,
spatial scales were reduced by a factor of 4 (so the model cortex

Author contributions: E.M.I. and G.M.E. designed research; E.M.I. performed research;
E.M.I. and G.M.E. analyzed data; and E.M.I. and G.M.E. wrote the paper.

The authors declare no conflict of interest.

*To whom correspondence should be addressed. E-mail: edelman@nsi.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0712231105/DC1.

© 2008 by The National Academy of Sciences of the USA

Fig. 1. The model’s global thalamocortical geometry and white matter
anatomy was obtained by means of diffusion tensor imaging (DTI) of a normal
human brain. In the illustration, left frontal, parietal, and a part of temporal
cortex have been cut to show a small fraction of white-matter fibers, color-
coded according to their destination.

www.pnas.org"cgi"doi"10.1073"pnas.0712231105 PNAS ! March 4, 2008 ! vol. 105 ! no. 9 ! 3593–3598
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Izhikevich E. M. and Edelman G. M. (2008) “Large-Scale Model of Mammalian Thalamocortical Systems,”
PNAS, 105:3593-3598
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nb1 1.5
p2/3 L2/3

 L1
26

b2/3 3.1
nb2/3 4.2

ss4(L4) 9.2
ss4(L2/3) 9.2

p4 L4
 L2/3
 L1

9.2

b4 5.4
nb4 1.5

p5(L2/3) L5
 L4
 L2/3
 L1

4.8

p5(L5/6) L5
 L4
 L2/3
 L1

1.3

b5 0.6
nb5 0.8

p6(L4) L6
 L5
 L4
 L2/3

13.6

p6(L5/6) L6
 L5
 L4
 L2/3
 L1

4.5

b6 2
nb6 2

TCs 0.5
TCn 0.5
TIs 0.1
TIn 0.1

TRN 0.5

8890 10.1 6.3 0.6 1.1   .   . 0.1   .   . 0.1   .   .   .   .   .   .   .   . 4.1   .   .   .77.6
5800   . 59.9 9.1 4.4 0.6 6.9 7.7   . 0.8 7.4   .   .   . 2.3   .   . 0.8   .   .   .   .   .  .
1306 10.2 6.3 0.1 1.1   .   . 0.1   .   . 0.1   .   .   .   .   .   .   .   . 4.1   .   .   .78
3854 1.3 51.6 10.6 3.4 0.5 5.8 6.6   . 0.8 6.3   .   .   . 2.1   .   . 0.7   . 0.5   .   .   .9.8
3307 1.7 48.6 11.4 3.3 0.5 5.5 6.2   . 0.8 5.9   .   .   . 1.8   .   . 0.6   . 0.7   .   .   .13
5792   . 2.7 0.2 0.6 11.9 3.7 4.1 7.1 2 0.8 0.1   .   . 32.7   .   . 5.8 1.7 1.3   .   .   .25.3
4989   . 5.6 0.4 0.8 11.3 3.8 4.3 7.2 2.1 1.1 0.1   .   . 31.1   .   . 5.5 1.7 1.3   .   .   .23.9
5031   . 4.3 0.2 0.6 11.5 3.6 4.2 7.2 2.1 1.2 0.1   .   . 31.4 0.1   . 5.9 1.7 1.3   .   .   .24.5
866   . 63.1 5.1 4.1 0.6 7.2 8.1   . 0.6 7.8   .   .   . 2.5   .   . 0.8   .   .   .   .   .  .
806 10.2 6.3 0.1 1.1   .   . 0.1   .   . 0.1   .   .   .   .   .   .   .   . 4.1   .   .   .78
3230   . 5.8 0.5 0.8 11 3.8 4.2 8.4 2.4 1.1   .   .   . 30.3   .   . 5.4 1.6 1.2   .   .   .23.3
3688   . 2.7 0.2 0.6 11.7 3.6 4 8.2 2.3 0.8 0.1   .   . 32.2   .   . 5.7 1.7 1.3   .   .   .24.9
4316   . 45.9 1.8 0.3 3.3 2 7.5   . 0.9 11.7 1 0.8 1.1 2.3 2.1   . 11.5 0.1 0.4   .   .   .7.2
283   . 2.8 0.1 0.7 12.2 3.8 4.2 5.2 1.5 0.8 0.1   .   . 33.7   .   . 5.9 1.8 1.4   .   .   .26
412   . 63.1 5.1 4.1 0.6 7.2 8.1   . 0.6 7.8   .   .   . 2.5   .   . 0.8   .   .   .   .   .  .
185 10.2 6.3 0.1 1.1   .   . 0.1   .   . 0.1   .   .   .   .   .   .   .   . 4.1   .   .   .78
5101   . 44.3 1.7 0.2 3.2 2 7.3   . 0.8 11.3 1.2 0.8 1.1 2.3 2.5 0.3 11.3 0.2 0.5   .   .   .9.2
949   . 2.8 0.1 0.7 12.2 3.8 4.2 5.2 1.5 0.8 0.1   .   . 33.7   .   . 5.9 1.8 1.4   .   .   .26
1367   . 63.1 5.1 4.1 0.6 7.2 8.1   . 0.6 7.8   .   .   . 2.5   .   . 0.8   .   .   .   .   .  .
5658 10.2 6.3 0.1 1.1   .   . 0.1   .   . 0.1   .   .   .   .   .   .   .   . 4.1   .   .   .78
2981   . 45.5 2.3 0.2 3.3 2 7.5   . 1.1 11.6 1 0.9 1.3 2.3 2   . 11.4 0.1 0.4   .   .   .7.2
2981   . 45.5 2.3 0.2 3.3 2 7.5   . 1.1 11.6 1 0.9 1.3 2.3 2   . 11.4 0.1 0.4   .   .   .7.2
3261   . 2.5 0.1 0.1 0.7 0.9 1.3   . 0.1 0.1 4.9   . 0.3 1.2 13.2 7.7 7.7 0.6 2.9   .   .   .55.7
1066   . 46.8 0.8 0.3 3.4 2.1 7.7   . 0.6 11.9 1 0.6 0.8 2.3 2.1   . 11.7 0.1 0.4   .   .   .7.4
1915   . 2.8 0.1 0.7 12.2 3.8 4.2 5.2 1.5 0.8 0.1   .   . 33.7   .   . 5.9 1.8 1.4   .   .   .26
121   . 63.1 5.1 4.1 0.6 7.2 8.1   . 0.6 7.8   .   .   . 2.5   .   . 0.8   .   .   .   .   .  .
5573   . 2.5 0.1 0.1 0.7 0.9 1.3   . 0.1 0.1 4.9   . 0.3 1.2 13.2 7.8 7.8 0.6 2.9   .   .   .55.7
257   . 46.8 0.8 0.3 3.4 2.1 7.7   . 0.6 11.9 1 0.6 0.8 2.3 2.1   . 11.7 0.1 0.4   .   .   .7.4
243   . 2.8 0.1 0.7 12.2 3.8 4.2 5.2 1.5 0.8 0.1   .   . 33.7   .   . 5.9 1.8 1.4   .   .   .26
286   . 63.1 5.1 4.1 0.6 7.2 8.1   . 0.6 7.8   .   .   . 2.5   .   . 0.8   .   .   .   .   .  .
62 10.2 6.3 0.1 1.1   .   . 0.1   .   . 0.1   .   .   .   .   .   .   .   . 4.1   .   .   .78
3220   . 2.5 0.1 0.1 0.7 0.9 1.3   . 0.1 0.1 4.9   . 0.4 1.2 13.2 7.7 7.7 0.6 2.9   .   .   .55.7
3220   . 2.5 0.1 0.1 0.7 0.9 1.3   . 0.1 0.1 4.9   . 0.4 1.2 13.2 7.7 7.7 0.6 2.9   .   .   .55.7

4000 31   . 7.1   .   .   .   .   .   .   .   .   .   . 23 8   .   .   .   . 5   . 25.9  .
4000 31   . 7.1   .   .   .   .   .   . 14 3.8   .   .   . 13.2   .   .   .   .   . 5 25.9  .
3000 13.5   . 48.7  .   .   .   .   .   .   .   .   .   . 9.8 3.3   .   . 0.4   . 24.4   .   .  .
3000 13.4   . 48.7  .   .   .   .   .   . 5.8 1.6   .   .   . 5.4   .   .   . 0.6   . 24.4   .  .
4000 40   .   .   .   .   .   .   .   .   .   .   .   . 30   .   .   . 10 10   .   . 10  .
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Cortical Column Conjecture Test

Let Ar be the adjacency matrix associated with induced subgraph
Hr.

We consider the test statistic

T =

R∑
r=1

||Ar − Ā||.

(Small values of T provide evidence in favor of HA.)

15 / 33
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If the Hr are known and aligned

For example, the p-value for the alternative observation, with
T ≈ 48.17, is p = 0.00345, justifying our claim that “the repeated
motif structure is evident.”

16 / 33
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The Effect of Graph Matching
For the test statistic

T =

R∑
r=1

||Ar − Ār||

we use post-matching sample graph means

Ār = (1/R)
∑

r ′
Ãr,r ′ .

Here
Ãr,r ′ = arg min

P∈P(nr∨nr ′)

‖Ar − PAr ′P>‖F

is the adjacency matrix for the graph Hr ′ matched to the graph Hr.
P(n) is the set of n× n permutation matrices (padding adjacency
matrices with zeros as needed to make the matrix multiplication
consistent).

17 / 33
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The Effect of Graph Matching

Consider two cases:

1. identity : β ≈ 0.865
2. barycenter : β ≈ 0.849

Both are significantly superior to
power without graph matching
(β ≈ 0.739)!?

18 / 33
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Identifying Large Scale Structures

• So far, we have considered the situation in which we know the
true subgraphs {Hr = Ω(Vr)}

R
r=1.

• In practice, we must first identify these large-scale structures
in G, e.g., community detection.

• We consider the case where we have imperfectly identified
subgraphs {Ĥr = Ω(V̂r)}

R̂
r=1, and it will be the collection {Ĥr}

that we ultimately must use to test the cortical column
conjecture.

19 / 33
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Robustness

Consider two cases:

1. blue: using true subgraphs
Hr = Ω(Vr).

2. red: using imperfectly
identified subgraphs {Ĥr}

R
r=1.

NB: significant reduction of
power!

20 / 33



Introduction Cortical Column Conjecture Test Identifying Large Scale Structures Discussion

Community Detection

We now consider the effect of using community detection
algorithms for (necessarily errorful) identification of large-scale
structures (candidate motifs) in G.

• Louvain (Walktrap, Infomap, ...).

• clustering ◦ adjacency spectral embedding.

• Adjusted Rand Index as a performance measure?

• Subsequent power as the performance measure!

V. D. Blondel, J.L. Guillaume, R. Lambiotte, and E. Lefebvre. “Fast unfolding of communities in large
networks,” Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008.
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Example
Consider n = 103, R = 10, and εH0 = 1.0, εHA = 0.3.

With p = 0.001:

## Louvain

wcL <- multilevel.community(g)

membL <- membership(wcL)

table(membL)

# H0:

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

# 1 96 1 1 1 1 92 1 103 98 105 1 94 106 98 101 100

# HA:

# 1 2 3 4 5 6 7 8 9 10 11 12

#101 1 101 101 1 95 106 96 99 100 99 100

(ariL <- adjustedRandIndex(labG, membL))

#[1] 0.8965267 : H0

#[1] 0.9319579 : HA

We truncate the collection of identified subgraphs {Ĥr}
R̂
r=1 by

discarding all those “tiny” clusters, yielding R̂ 6 R̂. We proceed

with the truncated collection {Ĥr}
R̂
r=1. (We use τ = 10.)

22 / 33
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Example

algorithm ARI(H0, HA) power

Louvain (0.90,0.93) 0.81
Walktrap (0.88,0.92) 0.82
Infomap (0.86,0.92) 0.86

skmeans ◦ ase (0.85,0.91) 0.76

23 / 33
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Discussion
• Ky Fan & Schatten
• estimation: ε̂
• (p − c)JK,K + qcIK
• directed, weighted, loopy, multi, ...
• soft seeds: 80/20 vertex attribute split (excitatory/inhibitory)
• a limited set of computing primitives;

that is, > 1 repeated motifs
• extension of this method to allow for overlapping subgraphs;

that is, a given node can participate in multiple instances of a
repeated subgraph

• graph-centric computer vision
• graph anova
• invariants
• scalability
• QQ / errroful / experimental design
• ...
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Matching C.elegans

Figure 4: Plotting the matched ratio Rm±2 s.e. for matching the 253 vertex chemical and electrical
C. elegans connectomes for seed values m = 0, 50, 100, 150, 200. We show the performance of
the JOFC and SGM algorithms for matching the graphs for all combinations of with/without
directness and with/without edge weights. JOFC is plotted in green, SGM in red, and chance in
black. Note that JOFC for each combination of with/without directedness and with/without edge
weights significantly outperforms the best SGM combination (directed and unweighted). For each
combination of m and ⇢, we ran 100 MC replicates.

four categories is 47. We employ m = 253 � 47 = 206 seeds not in these four categories. We
first (case I) let all 206 vertices not in categories IL, OL, RI and RM be our seeded vertices, and
we seek to correctly classify the 47 remaining vertices into their proper category. We measure
the number of the 47 vertices matched correctly across the graphs and also measure the number
matched to a vertex of the correct category. Second (case II), for each of the four categories
c 2 {IL; OL; RI; RM} in turn, the m seeds are chosen to be all the neurons in category c together
with m � nc seeds chosen randomly from amongst the 206 neurons not in these four categories.
Again, we measure the number of the 47�nc vertices matched correctly across the graphs (Figure
5 a) and measure the number matched to a vertex of the correct category (Figure 5 b). Note the
e↵ect that the di↵erent choices of seedings has on the matching performance. Indeed, “informative”
seeds can greatly increase the matching performance in our algorithm, and in future work we plan
to investigate heuristics for optimizing the information in our selected seeds. The results are
summarized in Figure 5.

13

Vince Lyzinski, Sancar Adali, Joshua T. Vogelstein, Youngser Park, Carey E. Priebe, “Seeded Graph
Matching Via Joint Optimization of Fidelity and Commensurability,” arXiv, 2014.
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Multiple Repeated Motifs
After performing SGM & Louvain procedures as needed, provided
that the number k of repeated motifs is k̂,

T =

R∑
r=1

‖Ar − Âr‖,

where Âr :=
∑k̂

i=1 ĜiĤir, each n× n non-negative matrix Ĝi

represents an (estimated) repeated motif, and each (Ĥ1r, . . . , Ĥk̂r)

is a probability vector as estimated using the following procedures:

SVT+NMF @ rank k

Xer ← vec(G(r)) for r = 1, . . . , R

X̂← (UΣV> of X @ rank k)+

(Ŵ, Ĥ)← arg min ‖X̂ − ŴĤ‖F

Model Selection

k̂← arg min
k=1,...,R

AIC(k),

Ĝi ← graph(Ŵei) for i = 1, . . . , k̂,

where ei is a standard basis in Rr̂.
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Quantity/Quality Trade-Off

3460 Priebe et al.

Then we evaluate the sign of !"
!#
!#=#0

at the current edge tracing algorithm operating
point #0;

!"
!#
!#=#0

> 0 implies less expensive more errorful (larger #) edge tracing
(resulting in larger z) will yield increased power, while !"

!#
!#=#0

< 0 implies that
inference will improve with more accurate but more expensive edge tracing (resulting
in fewer putative edges). Finding #⋆ such that !"

!#
!#=#⋆ = 0 will (after checking

appropriate side conditions) yield optimal power "⋆ = "%#⋆&. To continue with our
example, we consider for illustration

z = h%#& = 50+ 200
sin%'/4&

sin%#'/2&(

designed to give h%0& = 50, "%0& ≈ 0)429 and h%1/2& = 250, "%1/2& ≈ 0)488 for
consistency with our running example. This h suggests that 50 expert days yields
z = 50 at # = 0 and z = 250 at # = 0)5; investigation into the precise character of
an appropriate h will be a necessary. For the specified h in our example we calculate
the optimal operating point for the edge tracing algorithm, obtaining #⋆ ≈ 0)247 and
resulting in h%#⋆& ≈ 157 and "%#⋆& ≈ 0)599. Thus optimizing the quantity/quality
trade-off has yielded an improvement in power of almost 40%. We should engineer
our edge tracing to operate at error rate #⋆ ≈ 0)247.

A summary of this example is presented in Fig. 1.

Figure 1. Power " and its derivative !"
!#

as functions of the edge tracing error rate # for
our example scenario (see text for details). (We plot % 12 &

!"
!#
%#& so that the two curves are on

approximately the same scale and can productively be presented on the same plot.)
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C.E. Priebe, J.T. Vogelstein and D. Bock “Optimizing the quantity/quality trade-off in connectome
inference,” Communications in Statistics - Theory and Methods, Volume 42, Issue 19, pp. 3455-3462, 2013.



Hierarchical Experimental Design
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Leopold Kronecker to Hermann von Helmholtz:

“The wealth of your practical experience
with sane and interesting problems

will give to mathematics
a new direction and a new impetus.”

Kronecker Helmholtz
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