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Introduction
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Many contemporary theories of neural information processing
suggest that the neocortex employs algorithms composed of
repeated instances of a limited set of computing primitives.

There is a recognized need for tools for interrogating the structure
of the cortical microcircuits believed to embody these primitives.
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Cortical Column Conjecture

Neurons are connected in a graph that exhibits motifs representing
repeated processing modules (Horton & Adams, 2005;
Mountcastle, 1997).

Question

e Can we test whether an observed cortical graph satisfies the
conjecture?

e Can we estimate relevant cortical computing parameters from
an observed cortical graph?

Goal
To present a notional demonstration of how statistical inference on
graphs can inform our understanding of cortical computing.

& J. C. Horton and D. L. Adams. “The cortical column: a structrue without a function,” Philosophical
transactions of the royal society B, 360(1456):837-862, Apr. 2005.

& V. Mountcastle. “The columnar organization of the neocortex,” Brain, 120(4):701-722, Apr. 1997.
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Q: repeated motifs?

e cortical graph G:
hierarchical block model on
n vertices (neurons).

e induced subgraph H,:
stochastic block models on
n,r=1,...,R .

1. identify large-scale

structures in G — H,,

2. test if H,'s correspond to

repeated motifs.
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Let Bk be the collection of symmetric K x K block-probability

matrices;
B :={B € [0, 1]¥*X|BT = BY.

Let M, x be the collection of length K non-negative integer-valued
vectors # with entries summing to n;

K
My :=1{i € NX| )7l =n).
k=1

Given positive integers n and K, consider 7 € M, ¢ and B € Bg.
We say a random graph G on vertex set V is a stochastic block
model graph G ~ SBM(V, i, B) if the vertices V are partitioned
into subsets V7, - -, Vg with sizes given by 7 = (i, - - - , fig) and
edges 1{u ~ v} are independent Bernoulli random variables with
P[MNU] :Bij for u e Vi and v € V]
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Given G = (V,E), where V = [n],
o {Vr}lez a disjoint partition of the vertices V, and for each
r=1,2,..., R, write n, :=|V,|.
e H =Q(V,) = (V,, E).
e H, ~ SBM(V,,my, B;), where n, € M,,, x and B, € Bg.
e for u e V, and v € Vv with r # v/, 1{u ~ v} ~ Bernoulli(p).

G ~ HSBM(V., 11, B), where it =[] | i} | --- | #i}]T and B is
given by
[ Bi plkxk - Pk
B Plkx B2
- Plkk
plkk -+ Plkk Br |
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Given generating block-probability matrix B* € By and € € [0, 1],

jid . .
we let B, e Fp« . where Fp. . specifies mutually independent
entries with
B, i~ Unz'form(B;‘j + eiljj)

for i <j (recall symmetry of B,). Here ii;; = min{Bf;-, 1 —B;‘]-} is the
maximum allowable range guaranteeing that the random variable
Br,ij stays in [0, 1].

Hypotheses of interest are given by

Hy:e> ¢
VEersus
HA €< €

with €y € (0, 1]. A smaller value of € corresponds to motifs having
more coherent structure.

10/33



Introduction Cortical Column Conjecture Test Identifying Large Scale Structures Discussion

0000000008000 0000 00000

Our cortical graph G:
e 1 vertices, with n € {103,104, 10°, 10°}.
o V =[n] is partitioned into R subsets {V,}R ;.

e H, = Q(V,) each have |V,| =n, = m =100, K =5 blocks.
e R=n/m.
e 171, = [2,50,15,8,25] T vr.

01 0.045 0015 019 0

0.045 0.05 0.035 0.4 0.03

B* = [0.015 0.035 0.08 0.105 0.04
019 0.4 0105 029 0.13

0 003 0.04 013 0.09

e p€{1072,1073,104,10-5).

Q Izhikevich E. M. and Edelman G. M. (2008) “Large-Scale Model of Mammalian Thalamocortical Systems,”

PNAS, 105:3593-3598
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Large-scale model of mammalian
thalamocortical systems

Eugene M. Izhikevich and Gerald M. Edelman*

The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121

!-
)

Contributed by Gerald M. Edelman, December 27, 2007 (sent for review December 21, 2007)

The understanding of the structural and dynamic complexity of
mammalian brains is greatly facilitated by computer simulations.
We present here a detailed large-scale thalamocortical model
based on in several ian species.
The model spans three anatomical scales. (i) It is based on global
(white-matter) thalamocortical anatomy obtained by means of
diffusion tensor imaging (DTI) of a human brain. (ii) It includes
multiple thalamic nuclei and six-layered cortical microcircuitry
based on in vitro labeling and three-dimensional reconstruction of
single neurons of cat visual cortex. (ii) It has 22 basic types of
neurons with appropriate laminar distri of their

dendritic trees. The model si million i tmen-
tal spiking neurons calibrated to reproduce known types of re-
sponses recorded in vitro in rats. It has almost half a billion
synapses with approp at re:eptor kinetics, short-term plasti
and long-t ynaptic plasti
(dendritic STDP). The model exhil ts behavioral regimes of normal
brain activity that were not explicitly built-in but emerged spon-
taneously as the result of interactions among anatomical and
dynamic processes. We describe spontaneous activity, sensitivity
to changes in individual neurons, emergence of waves and

rhythms, and functional connectivity on different scales. Fig. 1. The model’s global thalamocortical geometry and white matter

anatomy was obtained by means of diffusion tensor imaging (DTI) of a normal
brain models | cerebral cortex | diffusion tensor imaging | oscillations | human brain. In the illustration, left frontal, parietal, and a part of temporal
spike-timing-dependent synaptic plasticity cortex have been cut to show a small fraction of white-matter fibers, color-

coded according to their destination.

\ Izhikevich E. M. and Edelman G. M. (2008) “Large-Scale Model of Mammalian Thalamocortical Systems,”
PNAS, 105:3593-3598
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& Izhikevich E. M. and Edelman G. M. (2008) “Large-Scale Model of Mammalian Thalamocortical Systems,”
PNAS, 105:3593-3598
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Cortical Column Conjecture Test
[ o]

Let A, be the adjacency matrix associated with induced subgraph
Hr.

We consider the test statistic
R —_—
T=) IA—All
r=1

(Small values of T provide evidence in favor of Hy.)

i5)/488
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Cortical Column Conjecture Test
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For example, the p-value for the alternative observation, with
T ~48.17, is p = 0.00345, justifying our claim that “the repeated

motif structure is evident.”

Discussion
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Cortical Column Conjecture Test
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For the test statistic

R
T=3Y A -4l
r=1
we use post-matching sample graph means

Ar=(1/R) ) A

Here
A, = argmin ||A,—PA.P"|F
PeP(n,\/n,,)

is the adjacency matrix for the graph H,» matched to the graph H,.

P(n) is the set of n x n permutation matrices (padding adjacency
matrices with zeros as needed to make the matrix multiplication
consistent).

17/33
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with graph matching

) T pEEET Consider two cases:
1. identity: B ~ 0.865
e * 2. barycenter: B ~ 0.849
e Both are significantly superior to
o] power without graph matching
(B ~0.739)!7
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Identifying Large Scale Structures

e So far, we have considered the situation in which we know the
true subgraphs (H, = Q(V,)}R

r=1-
e In practice, we must first identify these large-scale structures
in G, e.g.,, community detection.

* We consider the case where we have imperfectly identified
subgraphs {F, = Q(V,)}* |, and it will be the collection {F,}
that we ultimately must use to test the cortical column
conjecture.
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Cortical Column Conjecture Test
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Identifying Large Scale Structures
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Consider two cases:

Discussion

1. blue: using true subgraphs

H, = Q(V,).

2. red: using imperfectly

identified subgraphs {ﬁr}le.

NB: significant reduction of

power!
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Cortical Column Conjecture Test Identifying Large Scale Structures Discussion
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We now consider the effect of using community detection
algorithms for (necessarily errorful) identification of large-scale
structures (candidate motifs) in G.

e Louvain (Walktrap, Infomap, ...).
e clustering o adjacency spectral embedding.
e Adjusted Rand Index as a performance measure?

e Subsequent power as the performance measure!

& V. D. Blondel, J.L. Guillaume, R. Lambiotte, and E. Lefebvre. “Fast unfolding of communities in large
networks,” Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008.
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Consider n = 103, R = 10, and ey, = 1.0, ey, =0.3.
With p = 0.001:

## Louvain

wcl <- multilevel.community(g)

membL <- membership(wcL)

table (membL)

# HO:

# 1 2 3 4 &6 6 7 8 9 10 11 12 13 14 15 16 17
# 1 96 1 1 1 1 92 1 103 98 105 1 94 106 98 101 100
# HA:

# 1 2 3 4 5 6 7 8 9 10 11 12

#101 1 101 101 1 95 106 96 99 100 99 100

(aril <- adjustedRandIndex(labG, membL))

#[1] 0.8965267 : HO

#[1] 0.9319579 : HA

We truncate the collection of identified subgraphs {I:Ir}fz1 by
discarding all those “tiny” clusters, yielding R < R. We proceed

with the truncated collection {ﬁr}rB:l. (We use T =10.)

22/33



Identifying Large Scale Structures
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algorithm ARI(Hy,H4) power

Louvain (0.90,0.93) 0.81
Walktrap  (0.88,0.92)  0.82
Infomap (0.86,0.92) 0.86

skmeans o ase  (0.85,0.91) 0.76
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Discussion

Ky Fan & Schatten

estimation: €

(p— )]k x +qclk

directed, weighted, loopy, multi, ...

soft seeds: 80/20 vertex attribute split (excitatory/inhibitory)
a limited set of computing primitives;

that is, > 1 repeated motifs

extension of this method to allow for overlapping subgraphs;
that is, a given node can participate in multiple instances of a
repeated subgraph

graph-centric computer vision

graph anova

invariants

scalability

QQ / errroful / experimental design
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Matching C.elegans

C. elegans

= = =S5GM- undirected weighted
=——5GM- undirscted unweighted
o3 ——3GM- undirected no seed

. .

1 SGM-directed weighted
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. JOFC - directed wesghted I
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Figure 4: Plotting the matched ratio R,,£2 s.e. for matching the 253 vertex chemical and electrical
C. elegans connectomes for seed values m = 0, 50, 100, 150, 200. We show the performance of
the JOFC and SGM algorithms for matching the graphs for all combinations of with/without
directness and with/without edge weights. JOFC is plotted in green, SGM in red, and chance in
black. Note that JOFC for each combination of with/without directedness and with/without edge
weights significantly outperforms the best SGM combination (directed and unweighted). For each
combination of m and p, we ran 100 MC replicates.

\ Vince Lyzinski, Sancar Adali, Joshua T. Vogelstein, Youngser Park, Carey E. Priebe, “Seeded Graph
Matching Via Joint Optimization of Fidelity and Commensurability,” arXiv, 2014.



Discussion

After performing SGM & Louvain procedures as needed, provided
that the number k of repeated motifs is k,

R
T=) [lA—Al
r=1

where Ar = ZLl @iflir, each n x n non-negative matrix @i
represents an (estimated) repeated motif, and each (Hy,, ... ,H%)
is a probability vector as estimated using the following procedures:

SVT-+NMF @ rank k Model Selection
Xe, « vec(G(r)) forr=1,...,R k + argmin AIC(k),
k=1,..., R

X « (ULVT of X @ rank k)™

A PN @iegraph(/l/vei) fori:l,...,%,
(W,H) < argmin || X — WH||g

where ¢; is a standard basis in R".

27 /33
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Figure 1. Power f and its derivative % as functions of the edge tracing error rate & for
our example scenario (see text for details). (We plot (%)%(s) so that the two curves are on
approximately the same scale and can productively be presented on the same plot.)

‘ C.E. Priebe, J.T. Vogelstein and D. Bock “Optimizing the quantity/quality trade-off in connectome
inference,” Communications in Statistics - Theory and Methods, Volume 42, Issue 19, pp. 3455-3462, 2013.
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(Photograph courtesy of Antony Barrington-Brown)
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Honorary Research Fellow, Division of Mathematical Statistics,
C.S1R.O, University of Adelaide; Foreign Associate, United States
National Academy of Sciences, and Foreign Honorary Member,
American Academy of Arts and Sciences; Foreign Member of the
‘Swedish Royal Academy of Sciences, and the Royal Danish Academy
of Sciences and Letters; Member of the Pontifical Acad

Galton Professor, University of London, and Arthur Balfour Professor
f Genetics, University of Cambridge

HAFNER PUBLISHING COMPANY
New York
1971



Introduction Cortical Column Conjecture Test
0000000000000 0000

Identifying Large Scale Structures
00000

Leopold Kronecker to Hermann von Helmholtz:

“The wealth of your practical experience
with sane and interesting problems
will give to mathematics
a new direction and a new impetus.”

Kronecker

Helmholtz

Discussion
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