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Graphs and inference

Network analysis is rapidly becoming a key tool in the analysis of modern
datasets in fields ranging from neuroscience to sociology to biochemistry.
In each of these fields, there are objects, such as neurons, people, or genes,
and there are relationships between objects, such as synapses, friendships,
or protein interactions.

The formation of these relationships can depend on attributes of the
individual objects as well as properties of the network as a whole. Objects
with similar attributes can form communities with similar connective
structure, while their unique properties fine tune the shape of these
relationships.

Clustering objects based on a graph enables identification of communities
and objects of interest as well as illumination of overall network structure.
However, finding optimal clusters is difficult and will depend on the
particular setting and task.
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Graphs and inference (continued)
By using statistical models with inherent community structure as models
for graphs [Handcock et al.(2007), Snijders and Nowicki(1997)], the
notion of optimal clusters is well-defined. We study the problem of
clustering and classification for some random graphs models, namely the
stochastic block model [Wang and Wong(1987), Holland et al.(1983)] and
a latent space model [Hoff et al.(2002)].

One example of a latent space model is the random dot product graph
(RDPG) model [Young and Scheinerman(2007)]. In this model, the
probability of an edge between two nodes is given by the dot product of
their respective latent vectors. For example, in a social network, the
vectors may be interpreted as representing the interest of the individuals.

We present an embedding motivated by the RDPG model which uses a
decomposition of a low rank approximation of the adjacency matrix giving
an embedding of the nodes as vectors in a low dimensional space. We
show that the resulting embedding is useful for clustering and classification
purposes.
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Stochastic blockmodel graphs

Let K be a positive integer. The stochastic blockmodel (SBM) for graphs
is a random graphs model parametrized by a matrix B ∈ [0, 1]K×K and a
probability vector ρ ∈ (0, 1)K and we denote by Gn ∼ SBM(B, ρ) a SBM
graph on n vertices.

A Gn ∼ SBM(B, ρ) can be sampled via the following procedure.

1 Sample τ1, τ2, . . . , τn
i.i.d∼ categorical(ρ), i.e., P[τi = k] = ρk .

2 Conditioned on the {τv}, the edges of Gn are independent Bernoulli
random variables with parameters B(τu, τv ), i.e., if we denote by A
the adjacency matrix of G , then

P[A | {τv}] =
∏
u 6=v

(B(τu, τv ))A(u,v)(1− B(τu, τv ))1−A(u,v)

We will denote by P the n × n matrix with entries P(u, v) = B(τu, τv ).
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Inferential task for SBM graphs

Given a graph G ∼ SBM(B, ρ) on n vertices, where B and ρ are
unobserved, we wish to

1 Determine the number of groups K

2 Estimate the group memberships τ : [n] 7→ K (i.e., the set {τv}v∈V )

A consistent estimator τ̂ of τ is one whose proportion of mis-assigned
nodes goes to zero (probabilistically) as n, the number of nodes goes to
∞. The issue of consistent partition for SBM has received much attention.
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Inferential task for SBM graphs (continued)

1 [Snijders and Nowicki(1997)] provided an algorithm to consistently
assign nodes to K = 2 blocks and [Condon and Karp(2001)] provided
a consistent estimator for the planted l-partition model, a special type
of SBM with equal-sized blocks.

2 [Bickel and Chen(2009)] showed that maximizing the Newman–Girvan
modularity or the likelihood modularity provides consistent estimation
of block membership and [Choi et al.(2012)] showed consistency for a
MLE with rapidly growing numbers of blocks (K = O(

√
n)).

3 [Rohe et al.(2011)] showed consistency for a spectral clustering
algorithm (for undirected graphs) using the normalized Laplacian.

4 Maximizing modularities or likelihoods are computationally
demanding and thus spectral methods provide a computationally
appealing alternative.
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SBM and random dot product graphs

An example of a class of SBM graphs is the class of random dot product
graphs [Young and Scheinerman(2007)].

Let U = [u1|u2|· · · |uK ]T and V = [v1|v2|· · · |vK ]T ; ui , vi ∈ Rd for all i .

Let X = [X1|X2|· · · |Xn]T and Y = [Y1|Y2|· · · |Yn]T be n × d matrix and
the (Xi ,Yi ) pairs are independent samples with Xi from U and Yi from V
according to a probability vector ρ > 0.

If 〈ui , vj〉 ∈ [0, 1] for all i , j ∈ [K ], then B = UVT (P = XYT ) and ρ
defines a stochastic blockmodel.

Conversely, if B and ρ defines a stochastic blockmodel, then there exists U
and V with rank(U) = rank(V) = rank(B) such that B = UVT .

Thus, if P (or an estimate P̂) is known, then one can recover the block
assignment τ (or an estimate τ̂) via the SVD decomposition
P = XYT (P̂ = X̂ŶT ).
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An adjacency-spectral partitioning algorithm
In their investigation of vertex nomination, [Marchette et al.(2011)]
suggested the following spectral-paritioning algorithm. The algorithm
makes no distinction between undirected and directed graphs.

Input: A ∈ {0, 1}n×n
Parameters: d ∈ {1, 2, . . . , n}, K ∈ {2, 3, . . . , n}
Output: τ̂ : [n] 7→ [K ] the block assignment function.
Step 1 : Compute the SVD of A = ÛŜV̂T .
Step 2 : Let Ŝd be the matrix corresponding to the d largest singular
values. Let Ûd and V̂d be the corresponding columns of Û and V̂.

Step 3 : Define Ẑ as [Ûd Ŝ
1/2
d |V̂d Ŝ

1/2
d ].

Step 4 : Solve the following clustering problem

(ψ̂, τ̂) = argmin
ψ∈RK×2d

τ : [n] 7→K

n∑
u=1

‖Ẑu − ψτ(u)‖2 (1)

where Ẑu is the u-th row of Ẑ.
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A modicum of consistency

Even though A might not be a good estimator for P with respect to the
Frobenius norm, i.e., ‖A− P‖F is of order O(n), AAT turns out to be a
good estimator of PPT . Specifically, we have

Proposition

Let Pn ∈ [0, 1]n×n be a sequence of matrices and let An ∈ {0, 1}n×n be a
sequence of adjacency matrices corresponding to a sequence of random
graphs on n nodes for n ∈ N. Suppose the probability of an edge from u
to v is given by Pn(u, v) and that the presence of edges are conditionally
independent given Pn. Then the following holds almost always:

‖AnA
T
n − PnP

T
n ‖F ≤

√
3n3 log n. (2)
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A modicum of consistency (continued)

By viewing AAT as a pertubation of PPT , the special structure of SBM
graphs along with an application of a Davis-Kahan theorem
[Davis and Kahan(1970)] gives

Theorem ([Sussman et al.(2012)])

Let SK be the set of permutations on [K ] and let τ̂ be the estimated
block-assignment function. Suppose that the number of blocks K and
rank(B) are known. Then it almost always hold that

min
π∈SK

|{u ∈ V : τ(u) 6= π(τ̂(u))}| ≤ C log n. (3)

for some constant C dependent on B and ρ. The proportion of
mis-assigned vertices thus goes to zero as n increases.
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A modicum of consistency (continued)

The previous theorem requires the knowledge of K and rank(B). A more
careful analysis gives the following stronger result (but with a weaker
bound on the error rate).

Theorem ([Fishkind et al.(preprint)])

Let SK be the set of permutations on [K ] and let τ̂ be the estimated
block-assignment function. Suppose that it is known that rank(B) ≤ R
for some R. Then, for any ε > 3

4 , it almost always hold that

min
π∈SK

|{u ∈ V : τ(u) 6= π(τ̂(u))}| ≤ Cnε (4)

for some constant C dependent on B and ρ. The proportion of
mis-assigned vertices thus goes to zero as n increases.
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Example 1: rank(B) and K unknown

ρ = (0.3, 0.3, 0.4)

B =

 .205 .045 .150
.045 .205 .150
.150 .150 .180


K = 3, rank(B) = 2
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Example 2: Spectral-clustering on simulated data

ρ = (0.6, 0.4)

B =

[
.42 .42
.42 .5

]
K = 2, rank(B) = 2
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A paired Wilcoxon test shows that the differences in performance between
the adjacency-spectral and the normalized Laplacian clustering are
statistically signficant for n ≥ 1400.
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Example 3: Spectral clusterings for a Wikipedia dataset
G is an undirected graph on n = 1382 nodes. Each node is a Wikipedia
page related to “Algebraic geometry” and the edges corresponds to the
presence of a hyperlink between the pages. The nodes were then manually
assigned labels in {1, 2, . . . , 5}.
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Figure: Scatter plots for the Wikipedia graph. Each point is colored according to
the manually assigned labels. The dashed line represents the discriminant
boundary determined by K -means with K = 2.
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A latent space model
Let Ω be a compact subset of Rd and let F be an absolutely continuous
probability measure on Ω. Suppose also that 〈ω1, ω2〉 ∈ [0, 1] for
ω1, ω2 ∈ Ω. For example, Ω is the unit simplex in Rd and F is the
Dirichlet distribution with parameter α > 0.

Let Gn be a graph on n vertices generated as follows.

1 Let ξ1, ξ2, . . . , ξn
i .i .d∼ F .

2 Conditioned on the {ξi}, the edges of Gn are independent Bernoulli
random variables with parameters 〈ξu, ξv 〉 i.e., if we denote by A the
adjacency matrix of G , then

P[A | {ξu}] =
∏
u 6=v

(〈ξu, ξv 〉)A(u,v)(1− 〈ξu, ξv 〉)1−A(u,v)

Gn is then an instance of a latent space model. This latent space model is
a random dot product model where the rows of X = [ξ1|ξ2|· · · |ξn]T are
sampled from a continuous distribution F .
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Latent position model and a classification problem

Let Fξ,Y be a probability measure on Ω× {0, 1} such that Fξ is absolutely
continuous on Ω. Fξ,Y then induces a classification problem.

We consider a sequence of (random) mappings Tn : Ω 7→ Rd for n ≥ 2
defined as follows.

Sample n − 1 points {ξi}n−1i=1
i .i .d∼ Fξ. Let ξn = ξ ∼ Fξ be given.

1 Let Xn = [ξ1|ξ2|· · · |ξn]T .

2 Sample a graph Gn on n vertices from the latent space model with
parameter Xn.

3 Let X̂ be the adjacency-spectral embedding of Gn and let {ξ̂i}ni=1

denote the rows of X̂.

4 Tn(ξ) = Tn(ξn) = ξ̂ := ξ̂n.
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Example 4: X̂ and LDA

Two-class problem for multivariate normal data

n = 1000, µ1 = (0.4, 0.4), µ2 = (0.5, 0.5), Σ =

[
1/400 0

0 1/400

]
{ξi}ni=1 ∼ N (µ1,Σ), Yi ≡ 0 for 1 ≤ i ≤ n

{ξi}2ni=n+1 ∼ N (µ2,Σ), Yi ≡ 1 for n + 1 ≤ i ≤ 2n

Let X = {ξi}2ni=1 be the sampled points. Let A be the adjacency matrix of
an instance of the latent space model with parameter X and let
X̂ = {ξ̂i}2ni=1 be the resulting embedding of A via the adjacency-spectral
partitioning algorithm. We train a LDA classifier on X using 1000 training
data points, 500 from each class, and test the resulting classifier on the
remaining 1000 data points, again with 500 from each class. We also train
a LDA classifier on X̂ with the same settings.
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Example 4: X̂ and LDA (continued)
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Figure: Scatter plots for X and X̂ for the current example. The error rate for a
LDA classifier trained and test on X is 0.077. The error rate for a LDA classifier
trained and test on X̂ is 0.085. The Bayes-risk is Φ(−

√
2) ≈ 0.0786.
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L∗Tn(ξ)

p−→ L∗ξ

Theorem

Let (ξ,Y ) ∼ Fξ,Y where Fξ,Y is a distribution function on Ω× {0, 1}.
Suppose that 〈ω1, ω2〉 ∈ [0, 1] for almost every ω1, ω2 ∈ Ω. Let
η(x) = P[Y = 1|ξ = x ] and suppose that η is also continuous. Let L∗ξ be
the Bayes-error for ξ and let L∗Tn(ξ)

be the Bayes-error for the

transformation Tn : Ω 7→ Rd . We then have, as n→∞

L∗Tn(ξ)
p−→ L∗ξ (5)
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Figure: Adjacency spectral partitioning when rank(B) and K are unknown.
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