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1. Introduction 
 
Suppose we have a community containing a small number of interesting subjects. 
The identities of these interesting subjects are not fully known; only a few of them 
are known. The vertex nomination problem is to nominate one of the unknown 
subjects as interesting. 
 
Our approach uses an attributed graph to model the community, with vertices 
representing subjects, a binary vertex attribute representing whether a subject is 
interesting, edges representing communications between subjects, and edge 
attributes representing contents of communications. 
 

 
 
 
 
 
 
 
 
 
 
 
 

The figure shows a graph with n = 12 vertices, where m’ = 2 are known to be 
interesting (•), m − m’ = 3 are interesting but unknown (ο), and n − m = 7 are 
uninteresting and unknown (ο). Edge attributes shown are binary (green or red) and 
all edges and their attributes are assumed to be known. The goal is to pick a red 
vertex from the vertices whose attributes are unknown. 
 
We formulate a Bayesian model using a context statistic (who communicates with 
who) and a content statistic (communication topic) associated with the graph, and 
assuming that these statistics are independent between vertices and that interesting 
content is more likely between interesting subjects. A Metropolis-within-Gibbs 
algorithm is implemented for sampling from the posterior distribution. The 
nominated vertex is one with the highest posterior probability of being interesting.  

2. Models 
 
Notations: 
 

For a vertex v, let 
 Y(v) = vertex attribute of v ∈ {1 = green, 2 = red}; 
 R(v) = context statistic = number of observed red vertices connected to v; 
 S(v) = content statistic = number of red edges incident to v; 
 T(v) = (R(v), S(v)). 
 

Given two green vertices or two vertices with different color, let 
 p1 = P(green edge between them); 
 p2 = P(red edge between them); 
 p0 = P(no edge between them) = 1 − p1 − p2. 
 

Given two red vertices, let 
 q1 = P(green edge between them); 
 q2 = P(red edge between them); 
 q0 = P(no edge between them) = 1 − q1 − q2. 
 

q = (q0, q1, q2) quantifies the frequency and distribution of communication between 
red vertices, while p = (p0, p1, p2) quantifies these for the rest of the graph (see 
figure above). 
 

Note that the total number of red vertices is m, of which m’ are observed to be red, 
and m − m’ are unobserved or latent. The number of latent green vertices is n − m. 

Assumptions: 
 

(i) Pairs of red vertices, both observed and latent, communicate with a different 
frequency from other pairs. 
 

(ii) Distribution of content amongst red vertices is different from the rest of the graph.  
 

(iii) Context and content statistics are independent between vertices. 
 

Specifically, for (i) and (ii), we assume that p1 = q1 and p2 < q2. 
 
 
Models: 
 
Given that v is a green vertex (ο), the distribution of T(v) is 
 

f1(T(v) | p1, p2) = {Bin(n−m’−1, p2) ∗ Bin(R(v), p2/(p1+p2))} ⋅ Bin(m’, p1+p2), 
 

where Bin(n, p) denotes a binomial distribution with parameters n and p, and g ∗ h 
denotes a discrete convolution between g and h. 
 

Given that v is a latent red vertex (ο), 
 

f2(T(v) | m, p1, p2, q2) = {Bin(n−m, p2) ∗ Bin(m−m’−1, q2) ∗ Bin(R(v), q2/(p1+q2))} ⋅ Bin(m’, p1+q2). 
 

Given that v is an observed red vertex (•), 
 

f’(T(v) | m, p1, p2, q2) = {Bin(n−m, p2) ∗ Bin(m−m’, q2) ∗ Bin(R(v), q2/(p1+q2))} ⋅ Bin(m’−1, p1+q2). 
 

Let T’ = (T’(1),…,T’(m’ )) be the statistics for the observed red vertices. 
Let T = (T(1),…,T(n−m’ )) be the statistics for the latent vertices whose attributes,    
Y = (Y(1),…,Y(n−m’ )), are unknown. 
 
Likelihood function: 
 

 
 
 
where 
 
 
Prior distribution: 
 

f(Y, p1, p2, q2 | ψ) = f(Y | ψ) f(p1, p2, q2), 
 

 
 
 

f(p1, p2, q2) = f(q2 | p1, p2) f(p1, p2) = Uniform(p2, 1−p1) Dirichlet(1, 1, 1), 
 

f(ψ | α, β) = Beta(α, β). 
 
Posterior distribution: 

3. Inference 
 
Let Y−i = Y \ Y(i), and let γ i be the conditional posterior probability that the latent 
vertex i is red given the attributes Y−i. Then 
 
 
 
which allows Y to be updated component-wise by Gibbs sampling. 
 

ψ can also be updated by Gibbs sampling, since 
 

f(ψ | T, T’, Y, p1, p2, q2) = Beta(α+m−m’, β+n−m). 
 

p1, p2, and q2, however, must be updated using Metropolis-Hastings sampling with 
the following proposal distributions derived from the prior distribution: 
 

f(p1 | p2, q2) = (1−p1−p2)-1 [log(1−p2) − log(q2−p2)]-1, p1 ∈ (0, 1−p2), 
 

f(p2 | p1, q2) = (1−p1−p2)-1 [log(1−p1) − log(1−p1−q2)]-1, p2 ∈ (0, q2), 
 

f(q2 | p1, p2) = (1−p1−p2)-1, q2 ∈ (p2, 1−p1). 

Metropolis-within-Gibbs sampler: 
 

Let (Y(h), p1
(h),p2

(h),q2
(h),ψ(h)) denote the state at iteration h. 

 

Gibbs step: 
 

 For i = 1, …, n−m’ : 
 

  Compute γ i(Y(h)(1),…,Y(h)(i−1),Y(h−1)(i+1),Y(h−1)(n−m’ ),p1
(h−1),p2

(h−1),q2
(h−1),ψ(h−1)), 

 

  Set Y(h)(i) = 1 or 2 with probability 1−γ i and γ i respectively. 
 

 Compute m(h) = m’ + ∑ I{2}(Y(h)(i)). 
 

 Generate ψ(h) ~ Beta(α+m(h)−m’, β+n−m(h)). 
 

Metropolis-Hastings step: 
 

 Generate p1* ~ f(p1 | p2
(h−1),q2

(h−1)). 
 
 Compute 
 

 Set p1
(h) = p1* or p1

(h−1) with probability π(p1) and 1−π(p1) respectively. 
 

 Generate p2* ~ f(p2 | p1
(h),q2

(h−1)). 
 
 Compute 
 
 Set p2

(h) = p2* or p2
(h−1) with probability π(p2) and 1−π(p2) respectively. 

 

 Generate q2* ~ f(q2 | p1
(h),p2

(h)). 
 
 Compute 
 
 Set q2

(h) = q2* or q2
(h−1) with probability π(q2) and 1−π(q2) respectively. 

 
Hyperprior distribution: 
 

Since our goal is to nominate a single vertex, the beta hyperprior distribution for ψ is 
chosen to induce sparsity in the potential nominees. One way to achieve this is a 
beta density with mode at 1/(n−m’); a convenient choice being α = 2 and β = n−m’. 

4. Simulation Results 
 
Experiment 1: n = 12, m = 5, m’ = 2, p1 = 0.25, p2 = 0.15, q2 = 0.25 
 
Results for the graph shown above: 
 
 
Trace plots of the moving average 
estimates of the marginal posterior 
probabilities that each of the unlabelled 
vertices is red. The top-ranking vertex is 
vertex 3, which is a latent red vertex and 
so we have a correct nomination in this 
case. 
 
 
 
 
 
Trace plots of nuisance parameters, p1, p2, 
q2, and hyperparameter, ψ. 
 
 
 
 
 
 
Marginal prior densities (dashed curves) 
and posterior densities (solid curves) for 
p1, p2, q2 and ψ. Red points on the x-axis 
indicate the true parameter values. Notice 
the concentration of the posterior densities 
near the true values for p1 and p2 but less 
so for q2 because of the smaller number of 
red vertices. 
 

 
 
 
Results from 1000 graphs: 
 
Probability of correct nomination ≈ 0.44,  
95% BCA bootstrap confidence interval = (0.41, 0.47), 
Probability of correct nomination purely by chance is 3/10 = 0.3, 
Odds ratio for correct nomination relative to chance ≈ 1.8. 
 
 
 
Estimates of the conditional probability of 
correct nomination given that the marginal 
posterior probability that the nominated 
vertex is red exceeds p, for values of p on 
the x-axis. Notice that an increasing trend 
is evident. 
 
 
 
 
 
 
Kernel densities fitted to posterior means 
of p1, p2, q2 and ψ from the 1000 graphs. 
Observe the concentration of probability 
mass around the true values of the 
nuisance parameters, indicated by red 
points on the x-axis. 
 
 
 
 
 
 

Experiment 2: n = 184, p1 = 0.2, p2 = 0.2, q2 = 0.4 
 
Coppersmith & Priebe (2012) defined a linear fusion statistic for vertex v, combining 
its context and content statistics, as 
 

τλ(v) = (1−λ)R(v) + λS(v), 
 

where λ ∈ [0, 1] is a fusion parameter that determined the relative weight of context 
and content information. For a given value of λ, the nominated vertex was a latent 
vertex with the largest value of τλ. 
 
The table below compares our method (BVN) with that of Coppersmith & Priebe 
(C&P), in terms of the probability of correct nomination for selected values of m and 
m’. 1000 graphs were used for each pair of (m, m’ ) values. Observe that when m’ is 
small relative to m, the two methods have the same performance. However, as m’ 
increases relative to m, BVN performs increasingly better than C&P, and has a 
higher rate of improvement when m is larger. 

5. Application Results 
 
The Enron email corpus, available at http://www.enron-mail.com/, consists of email 
communications amongst Enron employees and their associates. Some of them 
were allegedly committing fraud and their fraudulent activity was captured in some 
emails along with many innocuous ones. Priebe, et al. (2005) derived a processed 
version of a subset of the email data, over a period of 189 weeks from 1998 to 2002. 
This yielded 1 graph per week, each containing the same 184 email users forming 
the vertices of the graph; 10 of these users have been found to have committed 
fraud. Berry, et al. (2007) indexed the contents of a subset of the email corpus into 
32 topics. These same topics were adopted by Coppersmith & Priebe (2012), who 
introduced a mapping from the topics to a binary edge attribute denoting content 
perceived as innocuous or fraudulent. 
 
We used one of the graphs derived by Priebe, et al. (2005), together with the binary 
edge attributes from Coppersmith & Priebe (2012), for the experiments described 
here. 

Experiment 1: 
5 of the 10 fraudsters were treated as known and the others as unknown, to see 
whether one of the unknown fraudsters will be correctly nominated. Thus, n = 184, 
m = 10 and m’ = 5. The probability of correct nomination was estimated from all 252 
(10 choose 5) combinations of 5 known fraudsters taken from the 10 fraudsters. For 
each combination, 1000 MCMC iterations were used for estimation after a burn-in of 
1000 iterations. 
 
Note that, in this case, the probability of correct nomination purely by chance is 
5/179 ≈ 0.03. 
 
Results: 
Probability of correct nomination ≈ 0.10,  
95% BCA bootstrap confidence interval = (0.09, 0.11), 
Odds ratio for correct nomination relative to chance ≈ 3.6. 
Sample means of the posterior means from the 252 combinations are 
p1 = 0.0168, p2 = 0.0111 and q2 = 0.1298. 

Experiment 2: 
Estimates of p1, p2 and q2 from Experiment 1 were treated as true values in a Monte 
Carlo simulation involving n = 184, m = 10 and m’ = 5. 
 
Results from 1000 graphs: 
Probability of correct nomination ≈ 0.50,  
95% BCA bootstrap confidence interval = (0.47, 0.53), 
Odds ratio for correct nomination relative to chance ≈ 32.3. 
 
 
 
Once again, we have an increasing trend 
in the conditional probability of correct 
nomination given that the marginal 
posterior probability that the nominated 
vertex is red exceeds p. This trend is 
even more pronounced here than before. 

6. Conclusion 
 
The Bayesian model 
 

(i) performs significantly better than chance; 
 

(ii) gives a probability of correct nomination that increases with increasing posterior 
probability that the nominated vertex is red; 
 

(iii) matches or performs better than the method in Coppersmith & Priebe (2012). 
 
A full paper is available from arXiv:1205.5082 
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m = 8 
  m’ = 2 m’ = 4 m’ = 6 

BVN 
0.09 0.12 0.09 

(0.08, 0.10)† (0.10, 0.13) (0.08, 0.11) 
C&P†† 0.09 0.11 0.06 

OR††† 1 1.10 1.55 

  
m = 32 

  m’ = 8 m’ = 16 m’ = 24 

BVN 
0.83 0.90 0.87 

(0.81, 0.85) (0.88, 0.92) (0.85, 0.89) 
C&P 0.83 0.86 0.78 
OR 1 1.47 1.89 

    † 95% BCA bootstrap confidence interval. 
  †† Optimal performance with optimal fusion parameter. 
††† Odds ratio for correct nomination by BVN relative to C&P. 
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 p m' : • 

m − m’ : ο 

n − m : ο 

Binary edge attributes for the graph shown in the figure. 
0 = no edge. 

               
    2 3 4 5 6 7 8 9 10 11 12 

 1 2 2 0 2 2 0 1 0 1 1 0 

 2   0 0 0 0 0 0 0 0 0 1 

 3     2 0 0 0 1 2 2 0 1 

 4       0 0 1 0 1 1 0 0 

 5         2 1 0 1 0 1 0 

 6           0 0 0 0 0 0 

 7             0 0 0 0 2 

 8               1 0 0 0 

 9                 1 0 1 

 10                   0 1 
 11                     0 
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