Bayesian Vertex Nomination

Dominic S. Lee ${ }^{1}$ and Carey E. Priebe ${ }^{2}$

${ }^{1}$ University of Canterbury, New Zealand; ${ }^{2}$ Johns Hopkins University, USA

1. Introduction

Suppose we have a community containing a small number of interesting subjects. he identities of these interesting subjects are not fully known; only a few of them are known. The vertex
subjects as interesting.

Our approach uses an attributed graph to model the community, with vertices epresenting subjects, a binary vertex attribute representing whether a subject is teresting, edges representing communications between subjects, and edge
attributes representing contents of communications.

Assumptions

(i) Pairs of red vertices, both observed and latent, communicate with a differen (ii) Distribution of content amongst red vertices is different from the rest of the graph. (iii) Context and content statistics are independent between vertices. Specifically, for (i) and (ii), we assume that $p_{1}=q_{1}$ and $p_{2}<q_{2}$.

Models:

Given that v is a green vertex (0), the distribution of $T(v)$ is
$f_{1}\left(T(v) \mid p_{1}, p_{2}\right)=\left\{\operatorname{Bin}\left(n-m^{\prime}-1, p_{2}\right) * \operatorname{Bin}\left(R(v), p_{2}\left(\left(p_{1}+p_{2}\right)\right)\right\} \cdot \operatorname{Bin}\left(m^{\prime}, p_{1}+p_{2}\right)\right.$,
where $\operatorname{Bin}(n, p)$ denotes a binomial distribution with parameters n and p, and $g * h$ denotes a discrete convolution between g and h.
Given that v is a latent red vertex (0),
$f_{2}\left(T(v) \mid m, p_{1}, p_{2}, q_{2}\right)=\left\{\operatorname{Bin}\left(n-m, p_{2}\right) * \operatorname{Bin}\left(m-m^{\prime}-1, q_{2}\right) * \operatorname{Bin}\left(R(v), q_{2}\left(p_{1}+q_{2}\right)\right)\right\} \cdot \operatorname{Bin}\left(m^{\prime}, p_{1}+q_{2}\right)$. Given that v is an observed red vertex (0) $f^{\prime}\left(T(v) \mid m, p_{1}, p_{2}, q_{2}\right)=\left\{\operatorname{Bin}\left(n-m, p_{2}\right) * \operatorname{Bin}\left(m-m^{\prime}, q_{2}\right) * \operatorname{Bin}\left(R(v), q_{2}\left(p_{1}+q_{2}\right)\right\}\right\} \cdot \operatorname{Bin}\left(m^{\prime}-1, p_{1}+q_{2}\right)$.

The figure shows a graph with $n=12$ vertices, where $m^{\prime}=2$ are known to be
interesting ($(0), m-m^{\prime}=3$ are interesting but unknown (o), and $n-m=7$ are interesting (\odot), $m-m^{\prime}=3$ are interesting but unknown (o), and $n-m=7$ are uninteresting and unknown (o). Edge attributes shown are binary (green or red) and
all edges and their attributes are assumed to be known. The goal is to pick a red all edges and ther atribu () are assumed to be kno

We formulate a Bayesian model using a context statistic (who communicates with who) and a content statistic (communication topic) associated with the graph, and assuming that these statistics are independent between vertices and that interesting
content is more likely between interesting subjects. A Metropolis-within-Gibbs algorithm is implemented for sampling from the posterior distribution. The nominated vertex is one with the highest posterior probability of being interesting.

Let $\mathbf{T}^{\prime}=\left(T^{\prime}(1), \ldots, T^{\prime}\left(m^{\prime}\right)\right)$ be the statistics for the observed red vertices. Let $\mathbf{T}=\left(T(1), \ldots, T\left(n-m^{\prime}\right)\right)$ be the statistics for the latent vertices whose attributes, $\mathbf{Y}=\left(Y(1), \ldots, Y\left(n-m^{\prime}\right)\right)$, are unknown.
Likelihood function:
$f\left(\mathbf{T}, \mathbf{T}^{\prime} \mid \mathbf{Y}, p_{1}, p_{2}, \boldsymbol{q}_{2}\right)=\prod \prod_{1}\left(T(i) \mid p_{1}, p_{2}\right) \prod f_{2}\left(T(j) \mid m, p_{1}, p_{2}, q_{2}\right) \prod_{k=1}^{m^{\prime}} f^{\prime}\left(T^{\prime}(k) \mid m, p_{1}, p_{2}, q_{2}\right)$,
where $m=m^{\prime}+\sum_{i=1}^{n-m^{\prime}}\left\{\left(\frac{12}{}(Y(i))\right.\right.$
Prior distribution:

$$
\begin{aligned}
& f(Y \mid \psi)=\prod_{\eta=1}^{n-m} \operatorname{Bernoulli}(\psi)=\psi^{m-m^{\prime}}(1-\psi)^{n-m} \\
& f\left(p_{1}, p_{2}, q_{2}\right)=f\left(q_{2} \mid p_{1}, p_{2}\right) f\left(p_{1}, p_{2}\right)=\operatorname{Uniform(p_{2},1-p_{1})\operatorname {Dir}} \\
& f\left(\psi \mid \alpha_{2}, \mathcal{\beta}\right)=\operatorname{Beta}(\alpha, \beta) .
\end{aligned}
$$

Posterior distribution:
$f\left(\mathbf{Y}, p_{1}, p_{2}, q_{2} \psi \mid \mathbf{T} \mathbf{T}^{\prime}\right) \propto f\left(\mathbf{T} \mathbf{T}^{\prime} \mid \boldsymbol{Y}, p_{1}, p_{2}, q_{2}\right) \psi^{m m^{\prime}+\alpha-1}(1-\psi)^{n-m+\beta-1} /(\mu)$
($p=\left(p_{0}, p_{1}, p_{2}\right)$ quantifies these for the rest of the graph (see Note that the total number of red vertices is m, of which m^{\prime} are observed to be red and $m-m^{\prime}$ are unobserved

Metropolis-within-Gibbs sample

Let $\left(\boldsymbol{Y}^{(h)}, p_{1}^{(h)}, p_{2}^{(h)}, q_{2}^{(h)}, \psi^{(h)}\right)$ denote the state at iteration h
Gibbs step:
For $i=1, \ldots, n-m^{\prime}$:
Compute $\gamma_{1}\left(Y^{(h)}(1), \ldots, Y^{(h)}(i-1), Y^{(h-1)}(i+1), Y^{(h-1)}\left(n-m^{\prime}\right), p_{1}^{(h-1)}, p_{2}^{(h-1)}, q_{2}^{(h-1)}, \psi^{(h-1)}\right)$,
Set $\gamma^{(h)}(i)=1$ or 2 with probability $1-\gamma_{i}$ and γ_{i} respectively.
Compute $m^{(h)}=m^{\prime}+\sum l_{122}\left(Y^{(h)}(i)\right)$.
Generate $\psi^{(n)} \sim \operatorname{Beta}\left(\alpha+m^{(n)}-m^{\prime}, \beta+n-m^{(n)}\right)$.
Metropolis-Hastings step:
Generate $p_{1}{ }^{*} \sim f\left(p_{1} \mid p_{2}^{(h-1)}, q_{2}^{(h-1)}\right)$.
Compute $\pi\left(p_{1}\right)=\min \left\{1, \frac{f\left(\mathbf{T}, \mathbf{T}^{\prime} \mid \mathbf{Y}^{(h)}, p_{1}^{*}, p_{p}^{(n-1)}, q^{(h-1)}\right)}{f\left(\mathbf{T}, \mathbf{T}^{\prime} \mid \mathbf{Y}^{(n)}, p_{1}^{(n-1)}, p_{2}^{(n-1)}, q_{2}^{(h-1)}\right)}\right\}$.

4. Simulation Results

Experiment 1: $n=12, m=5, m^{\prime}=2, p_{1}=0.25, p_{2}=0.15, q_{2}=0.25$
Results for the graph shown above:
Trace plots of the moving average
estimates of the marginal posterior estimates of the marginal posterior
probabilities that each of the unlabelled vertices is red. The top-ranking vertex is vertex 3 , which is a latent red vertex and so we have a correct nomination in this
race plots of nuisance parameters, p_{1}, p_{2}
q_{2}, and hyperparameter, $\%$

Marginal prior densities (dashed curves) and posterior densities (solid curves) for p_{1}, p_{2}, q_{2} and ψ. Red points on the x-axis indicate the true parameter values. Notice he concentration of the posterior densities near the true values or p_{1} and p_{2} but less
o for q_{2} because of the smaller number of red vertices.

Results from 1000 graphs:

Probability of correct nomination ≈ 0.44,
95% BCA bootstrap confidence interval $=(0.41,0.47)$, Odds ratio for correct nomination relative to chance $\approx 1.8=0.3$

mel densities fitted to posterior means of p_{1}, p_{2}, q_{2} and ψ from the 1000 graphs.
Observe the concentration of probability mass around the true values of the nuisance parameters, indicated by red points on the x-axis.

Experiment 1
5 of the 10 fraudsters were treated as known and the others as unknown, to see $m=10$ and $m^{\prime}=5$. The probability of correct nomination was estimated from all 252 (10 choose 5) combinations of 5 known fraudsters taken from the 10 fraudsters. For each combination, 1000 MCMC iterations were used for estimation after a burn-in of each combination
1000 iterations.

Note that, in
$5 / 179 \approx 0.03$.

Results

Probability of correct nomination ≈ 0.10,
Odds ratio footstrap confidence interval $=(0.09,0.11)$, Odds ratio for correct nomination relative to chance ≈ 3.6 $p_{1}=0.0168, p_{2}=0.0111$ and $q_{2}=0.1298$.

5. Application Results

The Enron email corpus, available at http://www.enron-mail.com/, consists of email communications amongst Enron employees and their associates. Some of them
were allegedly committing fraud and their fraudulent activity was captured in some were allegedy commiting fraud and their fraudulent activity was captured in some
emails along with many innocuous ones. Priebe, et al. (2005) derived a processed version of a subset of the email data, over a period of 189 weeks from 1998 to 2002. This yielded 1 graph per week, each containing the same 184 email users forming
he vertices of the graph; 10 of these users have been found to have committed the vertices of the graph; 10 of these users have been found to have committed
fraud. Berry, et al. (2007) indexed the contents of a subset of the email corpus into fraud. Berry, et al. (2007) ondexed the contents of a subset of the email corpus into
32 topics. These same topics were adopted by Coppersmith \& Priebe (2012), who introduced a mapping from the topics to a binary edge attribute denoting content perceived as innocuous or fraudulent.

We used one of the graphs derived by Priebe, et al. (2005), together with the binary
edge attributes from Coppersmith \& Priebe (2012), for the experiments described dge attributes from Coppersmith \& Priebe (2012), for the experiments described

6. Conclusion

The Bayesian model
(i) performs significantly better than chance
(ii) gives a probability of correct nomination that increases with increasing posterior probability that the nominated vertex is red;
(iii) matches or performs better than the method in Coppersmith \& Priebe (2012),

A full paper is available from arXiv:1205.5082

References

Berry, M.W., Browne, M. and Signer, B. (2007). 2001 Topic annotated Enron ema
data set , Let. Linguistic Data Consortium. Philadelphia
Coppersmith, G.A. and Priebe, C.E. (2012). Vertex nomination via content and iex. arxiv. $1201.4118 \mathrm{Jv1}, 19$ January 2012.
Priebe, C. E., Conroy, J. M., Marchette, D. J. and Park, Y. (2005). Scan statistics on
Enron graphs. Computational and Mathematical Proan

Set $p_{1}^{(h)}=p_{1}^{*}$ or $p_{1}^{(h-1)}$ with probability $\pi\left(p_{1}\right)$ and $1-\pi\left(p_{1}\right)$ respectively
Generate $p_{2}{ }^{*} \sim f\left(p_{2} \mid p_{1}^{(h)}, q_{2}^{(h-1)}\right)$.
Compute $\pi\left(p_{2}\right)=\min \left\{1, \frac{f\left(\mathbf{T}, \mathbf{T}^{\prime} \mid \boldsymbol{Y}^{(n)}, p_{1}^{(h)},,_{2}^{*}, q_{2}^{(n-1)}\right)}{f\left(\mathbf{T}, \mathbf{T}^{\prime} \mid \mathbf{Y}^{(n)}, p_{1}^{(n)}, p_{2}^{(n-1)}, q_{2}^{(h-1)}\right)}\right.$
Set $p_{2}^{(h)}=p_{2}{ }^{*}$ or $p_{2}^{(h-1)}$ with probability $\pi\left(p_{2}\right)$ and $1-\pi\left(p_{2}\right)$ respectively.
Generate $q_{2^{*}}{ }^{*} \sim f\left(q_{2} \mid p_{1}{ }^{(n)}, p_{2}^{(h)}\right)$.
Compute $\pi\left(q_{2}\right)=\min \left\{1, \frac{f\left(\mathbf{T}, \mathbf{T}^{\prime} \mid \mathbf{Y}^{(n)}, p_{1}^{(n)}, p_{(2)}^{(h)}, q^{\circ}\right)}{f\left(\mathbf{T}, \mathbf{T}^{\prime} \mid \mathbf{Y}^{(n)}, p_{1}^{(n)}, p_{2}^{(n)}, q_{2}^{(n-1)}\right)}\right\}$
Set $q_{2}^{(h)}=q_{2}{ }^{*}$ or $q_{2}^{(h-1)}$ with probability $\pi\left(q_{2}\right)$ and $1-\pi\left(q_{2}\right)$ respectively

Hyperprior distribution:

Since our goal is to nominate a single vertex, the beta hyperprior distribution for ψ is chosen to induce sparsity in the potential nominees. One way to achieve this is
beta density with mode at $1 /\left(n-m^{\prime}\right)$; a convenient choice being $\alpha=2$ and $\beta=n-m^{\prime}$.

Experiment 2: $n=184, p_{1}=0.2, p_{2}=0.2, q_{2}=0.4$

Coppersmith \& Priebe (2012) defined a linear fusion statistic for vertex v, combining its context and content statistics, as

$$
\tau_{\lambda}(v)=(1-\lambda) R(v)+\lambda S(v),
$$

where $\lambda \in[0,1]$ is a fusion parameter that determined the relative weight of contex mation. For a given value of λ, the nominated vertex was a latent vertex with the largest value of τ_{λ}.

The table below compares our method (BVN) with that of Coppersmith \& Priebe (C\&P), in terms of the probability of correct nomination for selected values of m and
$m^{\prime}, 1000$ graphs were used for each pair of (m, m^{\prime}) values Observe that when m^{\prime} is $m^{\prime} .1000$ graphs were used for each pair of (m, m^{\prime}) values. Observe that when m^{\prime} is
small relative to m, the two methods have the same performance. However, as m^{\prime} increases relative to m, BVN performs increasingly better than C\&P, and has a higher rate of improvement when m is larger.

$m=8$			
	$m^{\prime}=2$	$m^{\prime}=4$	$m^{\prime}=6$
BVN	$\begin{gathered} 0.09 \\ (0.08,0.10)^{\dagger} \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.12 \\ (0.10,0.13) \\ \hline \end{gathered}$	$\begin{gathered} 0.09 \\ (0.08,0.11) \\ \hline \end{gathered}$
C\&P ${ }^{\text {+ }}$	0.09	0.11	0.06
OR ${ }^{\text {+1+ }}$	1	1.10	1.55
$m=32$			
	$m^{\prime}=8$	$m^{\prime}=16$	$m^{\prime}=24$
BVN	$\begin{gathered} \hline 0.83 \\ (0.81,0.85) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.88,0.92) \end{gathered}$	$\begin{gathered} \hline 0.87 \\ (0.85,0.89) \end{gathered}$
C\&P	0.83	0.86	0.78
OR	1	1.47	1.89

Experiment 2:

Estimates of p_{1}, p_{2} and q_{2} from Experiment 1 were treated as true values in a Monte mutation involving $n=184, m=10$ and $m^{\prime}=5$.

Results from 1000 graph
Probability of correct nomination ≈ 0.50,
Odds ratio for correct nomination relative to $=(0.47,0.53)$,
Od,

Once again, we have an increasing trend in the conditional probability of correct nomination given that the marginal
posterior probability that the nominated vertex is red exceeds p. This trend is

Acknowledgements

Thanks to Youngser Park for assistance with the Enron data, and to Celine CattoenGilbert for suggestions about computations.

