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ABSTRACT

We derive asymptotics of moments and identify limiting distributions, under the
random permutation model on m-ary search trees, for functionals that satisfy recurrence
relations of a simple additive form. Many important functionals including the space
requirement, internal path length, and the so-called shape functional fall under this
framework. The approach is based on establishing transfer theorems that link the
order of growth of the input into a particular (deterministic) recurrence to the order of
growth of the output. The transfer theorems are used in conjunction with the method of
moments to establish limit laws. It is shown that (i) for small toll sequences (tn) [roughly,
tn = O(n1/2)] we have asymptotic normality if m ≤ 26 and typically periodic behavior
if m ≥ 27; (ii) for moderate toll sequences [roughly, tn = ω(n1/2) but tn = o(n)] we
have convergence to non-normal distributions if m ≤ m0 (where m0 ≥ 26) and typically
periodic behavior if m ≥ m0 + 1; and (iii) for large toll sequences [roughly, tn = ω(n)]
we have convergence to non-normal distributions for all values of m.
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1 Background and notation

We start by giving a brief overview of search trees which are fundamental data structures
in computer science used in searching and sorting. For integer m ≥ 2, the m-ary search
tree, or multiway tree, generalizes the binary search tree. The quantity m is called the
branching factor. According to [17], search trees of branching factors higher than 2 were
first suggested by Muntz and Uzgalis [21] “to solve internal memory problems with large
quantities of data.” For more background we refer the reader to [15, 16] and [17].

An m-ary tree is a rooted tree with at most m “children” for each node (vertex), each
child of a node being distinguished as one of m possible types. Recursively expressed, an
m-ary tree either is empty or consists of a distinguished node (called the root) together
with an ordered m-tuple of subtrees, each of which is an m-ary tree.

An m-ary search tree is an m-ary tree in which each node has the capacity to
contain m − 1 elements of some linearly ordered set, called the set of keys. In typical
implementations of m-ary search trees, the keys at each node are stored in increasing
order and at each node one has m pointers to the subtrees. By spreading the input data
in m directions instead of only 2, as is the case for a binary search tree, one seeks to
have shorter path lengths and thus quicker searches.

We consider the space of m-ary search trees on n keys, and assume that the keys
are linearly ordered. Hence, without loss of generality, we can take the set of keys to be
[n] := {1, 2, . . . , n}. We construct an m-ary search tree from a sequence s of n distinct
keys in the following way:

(i) If n < m, then all the keys are stored in the root node in increasing order.

(ii) If n ≥ m, then the first m − 1 keys in the sequence are stored in the root in
increasing order, and the remaining n − (m − 1) keys are stored in the subtrees
subject to the condition that if σ1 < σ2 < · · · < σm−1 denotes the ordered sequence
of keys in the root, then the keys in the jth subtree are those that lie between
σj−1 and σj , where σ0 := 0 and σm := n + 1, sequenced as in s.

(iii) All the subtrees are m-ary search trees that satisfy conditions (i), (ii), and (iii).

It is our goal to study additive functionals (see Definition 1.1) defined on m-ary
search trees. Such functionals represent the cost of divide-and-conquer algorithms,
reflecting the inherent recursive nature of the algorithms.

Let T be an m-ary search tree. We use |T | to denote the number of keys in T . Call
a node full if it contains m − 1 keys. For 1 ≤ j ≤ m, let Lj(T ) denote the jth subtree
pendant from the root of T . For a node x in T , write Tx for the subtree of T consisting
of x and its descendants, with x as root. This notation is illustrated in Figure 1.

Definition 1.1. Fix m ≥ 2. We will call a functional f on m-ary search trees an
additive tree functional if it satisfies the recurrence

f(T ) =
m∑

i=1

f(Li(T )) + t|T |, (1.1)

for any tree T with |T | ≥ m− 1. Here (tn)n≥m−1 is a given sequence, henceforth called
the toll sequence or toll function.
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Figure 1: Example of notation for a quaternary tree T : here, |T | = 15 and Tx = L1.

Note that the recurrence (1.1) does not make any reference to tn for 0 ≤ n ≤ m− 2
nor specify f(T ) for 0 ≤ |T | ≤ m − 2.

Several interesting examples can be cast as additive functionals.

Example 1.2. If we specify f(T ) arbitrarily for 0 ≤ |T | ≤ m− 2 and take tn ≡ c for n ≥
m − 1, we obtain the “additive functional” framework of [17, §3.1]. (Our definition
of an additive functional generalizes this notion.) In particular if we define f(∅) := 0
and f(T ) := 1 for the unique m-ary search tree T on n keys for 1 ≤ n ≤ m − 2 and let
tn ≡ 1 for n ≥ m − 1, then f(T ) counts the number of nodes in T and thus gives the
space requirement functional discussed in [17, §3.4].

Example 1.3. If we define f(T ) := 0 when 0 ≤ |T | ≤ m − 2 and tn := n − (m − 1) for
n ≥ m − 1 then f is the internal path length functional discussed in [17, §3.5]: f(T ) is
the sum of all root-to-key distances in T .

Example 1.4. As described above, each permutation of [n] gives rise to an m-ary search
tree. Suppose we place the uniform distribution on such permutations. This induces
a distribution on m-ary search trees called the random permutation model. Denote its
probability mass function by Q. It is important to note that Q is not uniform, since
different permutations can give rise to the same tree. For example, the permutations

(10, 7, 12, 4, 1, 8, 5, 6, 9, 14, 11, 2, 15, 13, 3)

and
(7, 10, 12, 1, 4, 8, 5, 6, 9, 14, 11, 2, 15, 13, 3)

both give rise to the quaternary search tree shown in Figure 1. Dobrow and Fill [8]
noted that

Q(T ) =
1∏

x

( |Tx|
m−1

) , (1.2)

where the product in (1.2) is over all full nodes in T . This functional is sometimes called
the shape functional as it serves as a crude measure of the “shape” of the tree, with
“full” trees (like the complete tree) achieving larger values of Q. For further discussions
along these lines, consult [8] and [9]. If we define f(T ) := 0 for 0 ≤ |T | ≤ m − 2 and
tn := ln

(
n

m−1

)
for n ≥ m − 1, then f(T ) = − lnQ(T ). In this work we will refer to
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− lnQ (rather than Q) as the shape functional. It was our desire to understand the
distribution of the shape functional under the random permutation model that led to
this paper.

We study the distribution of the functional f(T ) when T is given the distribution Q
described in Example 1.4. To do this, we derive asymptotics for the moments of f(T )
and then employ the method of moments.

Remark. In the sequel (without any loss of applicability) we will restrict attention to
real-valued toll sequences.

Related work

Chern and Hwang [5] carried out the program of this paper for the space requirement
(Example 1.2) and independently discovered Theorem 2.4 [5, Proposition 7]. Hwang
and Neininger [14] analyzed a range of (not necessarily deterministic) toll functions
for binary search trees. In this paper we treat m-ary search trees for any m ≥ 2,
and for simplicity we restrict attention to deterministic toll sequences. Another closely
related paper is [6], where the authors consider variants of the Quicksort algorithm by
allowing more general schemes of choosing the pivot. As in our Section 2.2, their paper
treats Cauchy–Euler differential equations, and a generalization of our Theorem 2.4 is
obtained [6, Theorem 1].

We obtain moment asymptotics for our additive functionals using the Asymptotic
Transfer Theorem of Section 2.2. An alternative approach employs singularity analy-
sis [12] of generating functions. A sketch of this approach in the case of binary search
trees (m = 2) is presented in [10]. One small advantage of the present approach is that
the conditions we impose on the toll sequence [for example, (2.11)] are milder than those
required for the application of singularity analysis.

2 Overview: main results

For a given toll sequence, the distribution of f(T ) depends only on n. We let Xn denote
a random variable whose distribution is that of f(T ) under the random permutation
model on T . It is the distribution of Xn which is the main focus of this paper.

2.1 A common framework for all moments

Under the random permutation model the joint distribution of the subtree sizes
|L1|, . . . , |Lm| is uniform over all

(
n

m−1

)
m-tuples of nonnegative integers that sum to

n − (m − 1): see [17, Exercise 3.8]. We now apply the law of total expectation to com-
pute µn(k) := EXk

n by conditioning on (|L1|, . . . , |Lm|). Let
∑

j denote the sum over all
m-tuples (j1, . . . , jm) that sum to n − (m − 1) and

∑
k the sum over all (m + 1)-tuples

(k1, . . . , km+1) of nonnegative integers that sum to k. Then, letting ⊕ denote sums of
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mutually independent random variables, for n ≥ m − 1 we have

µn(k) = EXk
n = EE (Xk

n

∣∣ |L1|, . . . , |Lm|) =
1(
n

m−1

) ∑
j

E (Xj1 ⊕ · · · ⊕ Xjm + tn)k

=
1(
n

m−1

) ∑
j

∑
k

(
k

k1, . . . , km, km+1

)
µj1(k1) · · ·µjm(km)tkm+1

n .

We can rewrite this equation as

µn(k) =
m(
n

m−1

) n−(m−1)∑
j=0

(
n − 1 − j

m − 2

)
µj(k) + rn(k), (2.1)

where

rn(k) :=
∑∗

k

(
k

k1, . . . , km, km+1

)
tkm+1
n

1(
n

m−1

) ∑
j

µj1(k1) · · ·µjm(km), (2.2)

with
∑∗

k denoting the same sum as
∑

k with the additional restriction that ki < k for
i = 1, . . . , m. We have thus established that the moments µn(k) each satisfy the same
basic recurrence in n, differing as k varies only in the non-homogeneous term rn(k).
Observe that rn(1) = tn, the toll function. We record this important fact as

Proposition 2.1. Under the random permutation model, all moments of an additive
functional satisfy the basic recurrence

an = bn +
m(
n

m−1

) n−(m−1)∑
j=0

(
n − 1 − j

m − 2

)
aj , n ≥ m − 1, (2.3)

with specified initial conditions (say) aj := bj, 0 ≤ j ≤ m − 2. [Recall the statement
following Definition 1.1 about the initial conditions for the recurrence (1.1).]

To be more specific, equation (2.3) is satisfied by an = µn(k) = EXk
n and bn = rn(k),

where rn(k) is defined in terms of lower-order moments of smaller trees at (2.2). We
proceed to study the recurrence relation (2.3) for general input (bn) and corresponding
output (an).

2.2 Transfer theorems

In order to analyze the recurrence relation (2.3) we introduce generating functions

A(z) :=
∞∑

n=0

anzn and B(z) :=
∞∑

n=0

bnzn.

Furthermore, let xr :=
∏r−1

k=0(x+k) denote the rth rising factorial power of x and xr :=∏r−1
k=0(x − k) the rth falling factorial power of x. Multiplying (2.3) by nm−1zn−(m−1)
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and summing over n ≥ m − 1 we get, after some (routine) calculation, the differential
equation

A(m−1)(z) = B(m−1)(z) + m!(1 − z)−(m−1)A(z). (2.4)

Equations of the form (2.4) are members of a class known as Euler differential equations.
Using the method of variation of parameters and combinatorial identities one can obtain
the general solution to this equation. See Section 3 for a proof.

Theorem 2.2 (Exact Transfer Theorem (ETT)). Let A and B denote the respective
ordinary generating functions of the sequences (an) and (bn) in the recurrence (2.3). Let

B̂(z) := B(z) −
m−2∑
j=0

bjz
j =

∞∑
n=m−1

bnzn. (2.5)

Then

A(z) =
m−1∑
j=1

cj(1 − z)−λj +
m−1∑
j=1

(1 − z)−λj

ψ′(λj)

∫ z

0
B(m−1)(ζ)(1 − ζ)λj+m−2 dζ (2.6)

=
m−1∑
j=1

cj(1 − z)−λj + B̂(z) + m!
m−1∑
j=1

(1 − z)−λj

ψ′(λj)

∫ z

0
B̂(ζ)(1 − ζ)λj−1 dζ, (2.7)

where ψ is the indicial polynomial

ψ(λ) := λm−1 − m! = λ(λ + 1) · · · (λ + m − 2) − m! (2.8)

with roots 2 =: λ1, λ2, . . . , λm−1 in nonincreasing order of real parts. In (2.6), the
coefficients c1, c2, . . . , cm−1 can be written explicitly in terms of the initial conditions
b0, . . . , bm−2 as

cj =
m!

ψ′(λj)

m−2∑
k=0

bk
k!

λk+1
j

, j = 1, . . . , m − 1. (2.9)

In particular,

c1 =
1

Hm − 1

m−2∑
j=0

bj

(j + 1)(j + 2)
. (2.10)

The indicial polynomial (2.8) is well studied; see [18, 17, 5] and Appendix B, and also
the related [19]. We will exploit the expression (2.6) for A(z) to relate the asymptotic
properties of the sequence (bn) to those of (an) and then use transfer theorems to derive
limiting distributions of additive functionals.

Remark 2.3. For computations, equation (2.6) might be easier to use when it is no
bother to compute derivatives of B; otherwise, (2.7) is easier. Equation (2.7) will be
used in establishing part (a) of the Asymptotic Transfer Theorem 2.4; the proof of
part (b) will use (2.6).
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It is quite easy to transfer asymptotics for B to asymptotics for A using the ETT. We
give three examples important for applications to moments of functionals in the next
theorem, proved independently by Félix Chern and Hsien-Kuei Hwang in [5] using a
quite different approach. The series convergence required in (2.11) need not be absolute.

Theorem 2.4 (Asymptotic Transfer Theorem (ATT)).

(a) If

bn = o(n) and
∞∑

n=0

bn

(n + 1)(n + 2)
converges, (2.11)

then

an =
K1

Hm − 1
n + o(n), where K1 :=

∞∑
j=0

bj

(j + 1)(j + 2)
. (2.12)

(b) If bn ≡ K2(n + 1) + hn where (hn) satisfies (2.11) [with (bn) replaced by (hn)],
then

an =
K2

Hm − 1
nHn +

K3

Hm − 1
n + o(n), (2.13)

where

K3 :=
∞∑

j=0

hj

(j + 1)(j + 2)
+ K2

[
Hm − 1

2
− 1 +

H
(2)
m − 1

2(Hm − 1)

]
. (2.14)

(c) If bn = K4n
v + o (nv) with v > 1, then

an =
K4

1 − m!Γ(v+1)
Γ(v+m)

nv + o (nv) . (2.15)

Of course part (a) is equally valid with
∑∞

n=0
bn
n2 replacing the series in (2.11).

Theorem 2.4 will be proved in Section 4. It is easy to see that the ratio m!Γ(v+1)
Γ(v+m)

appearing in (2.15) has modulus strictly less than unity; in particular, the expression
given is well defined. Refined and additional asymptotic transfers will be discussed in
Section 5.

2.3 Limiting distributions

Applications to moments and limiting distributions are discussed for “small” toll se-
quences in Section 5—see Theorems 5.1 and 5.4; “moderate” and “large” toll sequences
are discussed in Section 6—see Theorems 6.2 and 6.5. We state here a summary theorem
that can be deduced easily from these four theorems. [For the definition of m0(β) in
case (ii) of the theorem, see Remark 6.3. Concerning the values of g1 and g2 in cases (ii)
and (iii), consult (6.5), (6.6) (and (6.2)).]

Theorem 2.5 (Limit theorem for additive functionals). Let Xn = f(Tn) be the
additive functional on random m-ary search trees corresponding to a toll sequence (tn),
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with Tn having the distribution on trees induced by a uniformly distributed permutation
on [n]. When (tn) satisfies one of the three conditions (i)–(iii) below, then

Xn − EXn√
VarXn

L−→ W,

with convergence of all moments. Here, with L denoting a slowly varying function,

(i) If 2 ≤ m ≤ 26 and

(a) tn = o(
√

n) and
∑∞ n−1 maxnδ≤k≤n

t2k
k2 < ∞ for some 0 < δ < 1 or

(b) tn ∼ √
nL(n),

then W has the standard normal distribution.

(ii) If tn ∼ nβL(n), with 1/2 < β < 1 and 2 ≤ m ≤ m0(β), then W = g
−1/2
2 Y where

L(Y ) is the unique distribution with finite second moment satisfying (6.1). Here

g2 =
(m − 1)!

1 − m!Γ(2β+1)
Γ(2β+m)

[
1

(m − 1)!
+ 2mg1

Γ(β + 1)
Γ(β + m)

+ m(m − 1)g2
1

Γ2(β + 1)
Γ(2β + m)

]
> 0,

(2.16)
with

g1 =
(

1 − m!Γ(β + 1)
Γ(β + m)

)−1

. (2.17)

(iii) If tn ∼ nβL(n) with β > 1, then W = g
−1/2
2 Y where L(Y ) is the unique dis-

tribution with finite second moment satisfying (6.1), where g2 is again defined
at (2.16)–(2.17).

Remark 2.6. In case (iii), it is easy to check that g1 > 0 and g2 > 0. In case (ii) one can
verify easily that g1 < 0. In this case to see that g2 > 0, note that no constant random
variable satisfies (6.1).

3 Proof of the ETT

In this section we prove the ETT, which is Theorem 2.2.

Proof. For the proof of (2.6), see Appendix A, in particular Corollary A.2 and Propo-
sition A.3. To begin the proof of (2.7), note that B can be replaced by B̂ in (2.6). We
then use repeated integration by parts and invoke Identity B.10. Denoting

Â := A(z) −
m−1∑
j=1

cj(1 − z)−λj ,

after m − 2 integrations by parts we find

Â(z) =
m−1∑
j=1

(1 − z)−λj

ψ′(λj)
(λj + m − 2) · · · (λj + 1)

∫ z

0
B̂′(ζ)(1 − ζ)λj dζ.
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But

(λj + m − 2) · · · (λj + 1) =
λm−1

j

λj
=

ψ(λj) + m!
λj

=
m!
λj

,

so

Â(z) = m!
m−1∑
j=1

(1 − z)−λj

λjψ′(λj)

∫ z

0
B̂′(ζ)(1 − ζ)λj dζ.

We obtain (2.7) by performing one more integration by parts and utilizing Identity B.9
with λ = 0.

4 Proof of the ATT

In this section we prove the ATT, which is Theorem 2.4. The following elementary
result, which is found in the first line of the proof of Lemma 6 in [5], is key to the
analysis of (2.7). For completeness, we include a proof.

Lemma 4.1. Let Y (z) =
∑∞

n=0 ynzn with y0 = 0. For any λ ∈ C,

[zn]
(

(1 − z)−λ

∫ z

0
(1 − ζ)λ−1Y (ζ) dζ

)
=

n−1∑
k=0

yk

k + 1

n∏
j=k+2

(
1 +

λ − 1
j

)
, n ≥ 0.

(4.1)

The product in (4.1) may be written (when λ ∈ C \ {0,−1,−2, . . .}) as

Γ(λ + n)Γ(2 + k)
Γ(1 + n)Γ(λ + k + 1)

,

which by Stirling’s formula equals

nλ−1
[
1 + O(n−1)

]
(k + 1)λ−1 [1 + O((k + 1)−1)]

(4.2)

for n ≥ 1 and k ≥ 1. [The product in (4.1) equals (4.2) even if λ ∈ {0,−1,−2, . . .}.]
Also, of special interest is the case λ = 2, in which case (4.1) reduces to

[zn]
(

(1 − z)−2

∫ z

0
(1 − ζ)Y (ζ) dζ

)
= (n + 1)

n−1∑
k=0

yk

(k + 1)(k + 2)
, n ≥ 0. (4.3)

Proof. The function W (z) := (1− z)−λ
∫ z
0(1− ζ)λ−1Y (ζ) dζ is the unique solution with

W (0) = 0 to the differential equation

W ′(z) = λ(1 − z)−1W (z) + (1 − z)−1Y (z);

that is, wn := [zn]W (z), n ≥ 0, satisfies w0 = 0 and

wn =
λ

n

n−1∑
k=0

wk +
1
n

n−1∑
k=0

yk, n ≥ 1. (4.4)

But the recurrence (4.4) can be easily solved to yield (4.1): compute the difference
nwn − (n − 1)wn−1 and iterate.
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For part (a) of the ATT we use the following estimates from [5]; these follow readily
from (4.1)–(4.3). [Part (a) is their Lemma 6; part (b) is used tacitly in the proof of
their Proposition 7.]

Lemma 4.2.

(a) If Re(λ) < 2 and Y (z) =
∑∞

n=0 ynzn satisfies y0 = 0 and yn = o(n), then

[zn]
(

(1 − z)−λ

∫ z

0
Y (ζ)(1 − ζ)λ−1 dζ

)
= o(n).

(b) With B̂ defined at (2.5), if (2.11) holds, then

[zn]
(

(1 − z)−2

∫ z

0
B̂(ζ)(1 − ζ) dζ

)
= n

∞∑
j=m−1

bj

(j + 1)(j + 2)
+ o(n).

For part (c) of the ATT, we will need the following simple comparison lemma.

Lemma 4.3. If (bn) and (b′n) are two input sequences such that

|bn| ≤ b′n for all n ≥ 0,

then the corresponding output sequences (an) and (a′n) in (2.3) (with the initial condi-
tions stated there) satisfy

|an| ≤ a′n for all n ≥ 0.

Proof. This follows immediately by induction.

Proof of Theorem 2.4. (a) From (2.7), assumption (2.11), Lemma 4.2, (2.10), and ψ′(2) =
m!(Hm − 1), the result is immediate.

(b) Suppose first that bn ≡ n + 1. Then B(z) ≡ (1 − z)−2, so

B(m−1)(z) ≡ m!(1 − z)−(m+1).

Plugging this into (2.6) we find

an = (n+1)

c1 + m!
m−1∑
j=2

1
(2 − λj)ψ′(λj)

+
m!

ψ′(2)
[zn]

[
(1 − z)−2 log

(
(1 − z)−1

)]
+o(n).

Now we use Identities B.11 and B.12. Also, since bn ≡ n + 1, we have from (2.10) in
this case that c1 = 1. Therefore

an = (n + 1)

(
1 +

1
2

[
H

(2)
m − 1

(Hm − 1)2
− 1

])
+

1
Hm − 1

[(n + 1)Hn − n] + o(n)

=
1

Hm − 1
nHn +

[
1
2
− 1

Hm − 1
+

H
(2)
m − 1

2(Hm − 1)2

]
n + o(n).
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This completes the proof of (b) for our special case, and the general case follows from
this and part (a) using the superposition principle.

(c) Suppose first that bn ≡ (v+1)n/n! ∼ nv/Γ(v+1), so that B(z) ≡ (1−z)−(v+1) and
B(m−1)(z) ≡ (v+1)m−1(1−z)−(v+m). Plugging this into (2.6) and utilizing Identity B.9
with λ = v + 1 and the calculation

(v + 1)m−1

(v + 1)m−1 − m!
=

[
1 − m!Γ(v + 1)

Γ(v + m)

]−1

,

we find

A(z) =
[
1 − m!Γ(v + 1)

Γ(v + m)

]−1

(1 − z)−(v+1) + O(|1 − z|−2).

By singularity analysis for large functions [12], this completes the proof of (c) for our
special case.

To complete the proof in the general case, we need only show that if bn = o(nv) for
v > 1, then an = o(nv). Indeed, fix ε > 0; then there exists a sequence (b′n) such that
|bn| ≤ b′n for all n and

b′n = ε(v + 1)n/n! for all large n.

The toll sequence is but a slight modification of our special-case toll sequence, and we
see that

a′n = ε′nv + o(nv), where ε′ :=
ε

Γ(v + 1)

[
1 − m!Γ(v + 1)

Γ(v + m)

]−1

.

Now Lemma 4.3 implies that

lim sup
n

|an|n−v ≤ ε′;

since ε (and hence ε′) can be made arbitrarily small, this completes the proof.

The conditions (2.11) on (bn) are not only sufficient but also necessary for asymptotic
linearity of an. Indeed, here is a converse:

Proposition 4.4. If an = Kn + o(n) for some constant K, then (2.11) holds.

Proof. Chern and Hwang [5] provide the simple proof that bn = o(n). Moreover, then,
from (2.7), (2.10), and (4.3) with Y taken to be B̂, we find that

n−1∑
j=0

bj

(j + 1)(j + 2)
= K(Hm − 1) + o(1),

i.e., that the series
∑∞

n=0
bn

(n+1)(n+2) converges [to K(Hm − 1)].

The following additional asymptotic transfer results are established by calculations
similar to those in the proof of the ATT. We leave detailed proofs as exercises for the
reader.
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Theorem 4.5 (more asymptotic transfers). Consider the initial value problem (2.3).

(a) If 2 ≤ m ≤ 26 and bn = o(
√

n), then we can refine (2.12) to

an =
K1

Hm − 1
n + o

(√
n
)
. (4.5)

(b) If Re λ2 =: α < 1 + β and bn ∼ nβL(n), where 1/2 < β < 1, with L slowly
varying, then we can refine (2.12) to

an =
K1

Hm − 1
n − (1 + β)m−1

m! − (1 + β)m−1
nβL(n) + o

(
nβL(n)

)
. (4.6)

(c) If bn ∼ nL(n) with L slowly varying, then, with K1 defined at (2.12),

an ∼
{

K1
Hm−1n, if

∑∞ L(k)
k < ∞,

1
Hm−1n

∑
k≤n

L(k)
k , if

∑∞ L(k)
k = ∞.

(4.7)

(d) Part (c) of the ATT can be extended as follows. If bn = K4n
vL(n) + o (nvL(n))

with v > 1 and L slowly varying, then

an =
K4

1 − m!Γ(v+1)
Γ(v+m)

nvL(n) + o (nvL(n)) . (4.8)

Proof hints. Whenever the conditions (2.11) are met we have by the ETT and (4.3)

an − K1

Hm − 1
(n + 1) = O(nα−1) + bn − 1

Hm − 1
(n + 1)

∞∑
k=n

b̂k

(k + 1)(k + 2)
(4.9)

+m!
m−1∑
j=2

1
ψ′(λj)

[zn]
(

(1 − z)−λj

∫ z

0
B̂(ζ)(1 − ζ)λj−1 dζ

)
,

where α is strictly smaller than 1 + β by assumption. (When β = 1/2 we know that
α < 3/2 when m ≤ 26.) Simple estimates, including the use of (4.2), give cases (a)
and (b); for (b), the coefficient of nβL(n) in (4.6) indeed is, using Identities B.9 and B.11,

1 − 1
(1 − β)(Hm − 1)

+ m!
m−1∑
j=2

1
((1 + β) − λj)ψ′(λj)

= − (1 + β)m−1

m! − (1 + β)m−1
.

In case (c), from the ETT result (2.7) and simple estimates we find

an = (n + 1)
1

Hm − 1

n−1∑
k=0

bk

(k + 1)(k + 2)
+ O(nL(n)).
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To finish, we use the regular variation fact (quoted by Hwang and Neininger [14] at
their equation (7) from Proposition 1.5.9a in [2]) that

L(n) = o

∑
k≤n

L(k)
k

 . (4.10)

In case (d), again from (2.7) and simple estimates we find

an = O(n) + bn + K4n
vL(n)m!

m−1∑
j=1

1
ψ′(λj)(v + 1 − λj)

+ o (nvL(n)) .

The proof is completed by using Identity B.9.

5 Asymptotic normality for small toll functions

In this section we establish asymptotic normality for “small” toll functions.

5.1 Central limit theorem statements

As did Hwang and Neininger in [14], in our Theorems 5.1 and 5.4 we treat two over-
lapping cases. Throughout, we write

∑
j as shorthand for the sum over m-tuples

(j1, . . . , jm) of nonnegative integers summing to n − (m − 1).

Theorem 5.1 (CLT I for small toll functions). If 2 ≤ m ≤ 26 and the toll sequence
(tn) satisfies

(a) tn = o
(√

n
)

and (b)
∞∑

n−1 max
nδ≤k≤n

t2k
k

< ∞ for some 0 < δ < 1, (5.1)

then the mean µn and variance σ2
n of the corresponding additive functional Xn on m-ary

search trees with the random permutation model satisfy, respectively,

µn =
K1

Hm − 1
n + o

(√
n
)

=: µn + o
(√

n
)
, (5.2)

with K1 defined at (2.12), and

σ2
n = σ2n + o(n), where σ2 :=

1
Hm − 1

∞∑
j=0

rj

(j + 1)(j + 2)
, (5.3)

with the sequence (rn) defined by rj := 0 for 0 ≤ j ≤ m − 2 and

rn :=
1(
n

m−1

) ∑
j

[
tn + µj1 + · · · + µjm − µn

]2
, n ≥ m − 1. (5.4)

Moreover,
Xn − µn√

n
is asymptotically N(0, σ2),

and there is convergence of moments of every order.
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Remark 5.2. One can check (for any 2 ≤ m < ∞) that the variance σ2
n vanishes for all

n ≥ m − 1 if and only if the toll sequence is chosen as

tn = t min{m − 1, n}, n ≥ 0

for some constant t ∈ R. In that case without loss of generality t = 1 and then Xn ≡ n
is just the number of keys and we have exact (though degenerate) normality. So we
shall assume in the proof of Theorem 5.1 that σ2 > 0.

Remark 5.3. (a) Condition (5.1)(b) trivially implies

∞∑ t2n
n2

< ∞, (5.5)

which in turn implies that (2.11) holds with absolute convergence; indeed, since the
nonnegative numbers [(n + 1)(n + 2)]−1, n ≥ 0, sum to unity, we have[ ∞∑

n=0

|tn|
(n + 1)(n + 2)

]2

≤
∞∑

n=0

t2n
(n + 1)(n + 2)

< ∞. (5.6)

(b) If

|tn| = O
(
t̃n
)

with 0 ≤ t̃n√
n
↓ and

∞∑ t̃2n
n2

< ∞, (5.7)

then we claim that (5.1) holds, and then as a corollary

tn√
n
↓ 0 and

∞∑ t2n
n2

< ∞

implies (5.1). To see the claim, first observe that the condition (5.7) certainly im-
plies (5.1)(a); moreover, we observe that the series (say, over 2 ≤ n < ∞) in (5.1)(b) is
bounded by a constant times

∞∑
n=2

n−1 max
nδ≤k≤n

t̃2k
k

=
∞∑

n=2

n−1
t̃2�nδ

�nδ
 =

∞∑
k=2

t̃2k
k

∑
(k−1)1/δ<n≤k1/δ

n−1 = O

( ∞∑
k=2

t̃2k
k2

)
< ∞.

(c) One can check that, when m = 2, the proof we will give of CLT I requires
only (5.1)(a) and (5.5). In that case we obtain a strengthening of “Case S1” of Theorem 2
in [14] (for deterministic toll sequences); they required tn = O

(√
n/(log n)(1/2)+ε

)
for

some ε > 0.

Theorem 5.4 (CLT II for small toll functions). If 2 ≤ m ≤ 26 and the toll sequence
(tn) satisfies

tn ∼ √
nL(n) (5.8)

with L slowly varying, then the mean µn of the corresponding additive functional Xn on
m-ary search trees with the random permutation model satisfies

µn =
K1

Hm − 1
n − (3/2)m−1

m! − (3/2)m−1

√
nL(n) + o

(√
nL(n)

)
. (5.9)
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with K1 defined at (2.12). If
∑∞ L2(k)

k < ∞, then the variance σ2
n satisfies (5.3)–(5.4)

and we define
s2(n) := σ2n.

If
∑∞ L2(k)

k = ∞, then

σ2
n ∼ s2(n) := σ2n

∑
k≤n

L2(k)
k

(5.10)

where in this case we define

σ2 :=

(
(3
2)m−1

)2 [
π
4 (m − 1) + 1

]− (m!)2

(Hm − 1)
[
m! − (3

2)m−1
]2 . (5.11)

Moreover, in either case

Xn − µn

s(n)
is asymptotically standard normal,

and there is convergence of moments of every order.

Remark 5.5. When m = 2 the constant σ2 in (5.11) equals 9
2π−14, and Theorem 5.4 re-

duces to “Case S2” of Theorem 2 in [14] (for deterministic toll sequences): see especially
their displays (15) and (17), with τ2 = 1.

5.2 Central limit theorem proofs

Proof of CLT I (Theorem 5.1). We use the method of moments together with asymp-
totic transfer results.

Given the toll sequence (tn) defining the sequence (Xn) of random functionals of
interest, the means (µn) satisfy the basic recurrence relation (2.3) with (bn) replaced by
(tn). Thus (5.2) simply repeats the asymptotic transfer result (4.5).

According to the law of total variance, the sequence (σ2
n) of variances also satisfies

the recurrence (2.3), but with (bn) replaced by (rn). According to Lemma 5.6 to follow,
the sequence (rn) satisfies the conditions (2.11). [Note: When m = 2, only (5.1)(a)
and (5.5), not (5.1)(b), are needed in the proof of Lemma 5.6.] Then (5.3) is immediate
from part (a) of the ATT.

Let X̃n := Xn −µ(n+1) for n ≥ 0. We will complete the proof of CLT I by showing
by induction on k that

µ̃n(k) := E X̃k
n, k ≥ 1 [with µ̃n(0) := 1] (5.12)

satisfies
µ̃n(2k) ∼ (2k)!

2kk!
σ2knk, k ≥ 1 (5.13)

and
µ̃n(2k − 1) = o

(
nk−(1/2)

)
, k ≥ 1. (5.14)
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Observe that (5.2)–(5.3) imply that (5.13) and (5.14) both hold for k = 1.
The key to the induction step for both (5.13) and (5.14) is to apply the law of

total expectation to (5.12), by conditioning on the subtree sizes |L1|, . . . , |Lm| (recall
the notation in Section 1). In a manner similar to (2.1), we have

µ̃n(k) =
m(
n

m−1

) n−(m−1)∑
j=0

(
n − 1 − j

m − 2

)
µ̃j(k) + rn(k), (5.15)

where

rn(k) :=
∑∗

k

(
k

k1, . . . , km, km+1

)
tkm+1
n × 1(

n
m−1

) ∑
j

µ̃j1(k1) · · · µ̃jm(km) (5.16)

with
∑∗

k here denoting the same sum as
∑

k with the additional restriction that ki < k
for i = 1, . . . , m. Observe that (5.15) is again of the basic form (2.3). We will apply the
ATT after evaluating rn(k) asymptotically.

We will treat the induction step in detail only for (5.13), the case (5.14) being
similar and somewhat easier. Let

∑∗∗
k denote the sum over m-tuples (k1, . . . , km) of

nonnegative integers, each < k, summing to k (i.e., the same sum as
∑∗

k with the
additional restriction that km+1 = 0). For k ≥ 2 we clearly have, by induction [recall
(5.13)–(5.14)],

rn(2k) = o(nk) +
∑∗∗

k

(
2k

2k1, . . . , 2km

)
1(
n

m−1

) ∑
j

µ̃j1(2k1) · · · µ̃jm(2km)

= o(nk) +
∑∗∗

k

(
2k

2k1, . . . , 2km

)
1(
n

m−1

) ∑
j

(2k1)!
2k1k1!

σ2k1jk1
1 · · · (2km)!

2kmkm!
σ2kmjkm

m

= o(nk) +
(2k)!
2kk!

σ2knk
∑∗∗

k

(
k

k1, . . . , km

)
1(
n

m−1

) ∑
j

(
j1

n

)k1

· · ·
(

jm

n

)km

.

But

1(
n

m−1

) ∑
j

(
j1

n

)k1

· · ·
(

jm

n

)km

→ (m − 1)!
∫

xk1
1 · · ·xkm−1

m−1 (1 − x1 − · · ·xm−1)
km dx1 · · · dxm−1

= (m − 1)!
Γ(k1 + 1) · · ·Γ(km + 1)

Γ(k + m)
=

1(
k

k1,...,km

)(
k+m−1

m−1

) ,

where the above integral is over (x1, . . . , xm−1) ∈ [0, 1]m−1 with sum not exceeding
unity. Since the number of terms in

∑∗∗
k is

(
k+m−1

m−1

)− m, we therefore have

rn(2k) =
(2k)!
2kk!

σ2knk

(
k+m−1

m−1

)− m(
k+m−1

m−1

) + o(nk)

=
(2k)!
2kk!

σ2knk

[
1 − m!Γ(k + 1)

Γ(k + m)

]
+ o(nk), k ≥ 2.
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Similarly,
rn(2k − 1) = o

(
nk−(1/2)

)
, k ≥ 2.

Now part (c) of the ATT implies (5.13) and (5.14).

The following lemma lies at the heart of the proof of Theorem 5.1.

Lemma 5.6. In the context of CLT I, the sequence (rn) defined at (5.4) satisfies the
conditions (2.11).

Proof. Clearly

rn =
1(
n

m−1

) ∑
j

[
tn + µ̃j1 + · · · + µ̃jm − µ̃n

]2
, n ≥ m − 1, (5.17)

with
µ̃n := µn − µ(n + 1), (5.18)

which is o (
√

n) by (5.2). Recall the inequality[
k∑

i=1

ξi

]2

≤ k
k∑

i=1

ξ2
i (5.19)

for real numbers ξ1, . . . , ξk. Applying this to (5.17),

rn

m + 2
≤ t2n + µ̃2

n +
m(
n

m−1

) n−(m−1)∑
j=0

(
n − 1 − j

m − 2

)
µ̃2

j , (5.20)

from which (2.11)(a) for (rn) is evident.
To establish the summability of rn/n2 we need only establish that of µ̃2

n/n2. Indeed
we can then use (5.20) again, together with (5.5) and the estimate

∞∑
n=m−1

n−2 m(
n

m−1

) n−(m−1)∑
j=0

(
n − 1 − j

m − 2

)
µ̃2

j

= m(m − 1)
∞∑

j=0

µ̃2
j

∞∑
n=j+m−1

(n − 1 − j)m−2

n2(n)m−1

≤ m(m − 1)
∞∑

j=0

µ̃2
j

∞∑
n=j+m−1

n−3

= O

(∑ µ̃2
j

j2

)
< ∞.

To establish the summability of µ̃2
n/n2, we recall from (4.9) and (4.2) that

µ̃n = O(nα−1) + tn − 1
Hm − 1

(n + 1)
∞∑

k=n

t̂k
(k + 1)(k + 2)

(5.21)

+
m−1∑
j=2

O

(
nαj−1

n−1∑
k=0

|t̂k|
(k + 1)αj

)
,
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writing αj := Re λj (with α = α2 < 3/2, since m ≤ 26). Using (5.19), we need only
establish the summability of n−2 times the square of each of the four terms on the
right in (5.21). The first of these verifications is trivial, and the second was carried out
at (5.5). For the third we apply the Cauchy–Schwarz inequality [compare (5.6)] to give[ ∞∑

k=n

t̂k
(k + 1)(k + 2)

]2

≤ 1
n

[ ∞∑
k=n

√
n

√
k

(k + 1)(k + 2)
|tk|√

k

]2

= O

(
1
n

∞∑
k=n

√
nk−3/2 t2k

k

)
= O

(
n−1/2

∞∑
k=n

k−5/2t2k

)
,

whence

∑
n

[ ∞∑
k=n

k̂k

(k + 1)(k + 2)

]2

= O

(∑
n

n−1/2
∞∑

k=n

k−5/2t2k

)

= O

(∑
k

k−5/2t2kk
1/2

)
= O

(∑
k

t2k
k2

)
< ∞

by (5.5) again.
We pause here to note that when m = 2 the proof is finished here, and that up to

now we have used only (5.5), not the stronger assumption (5.1)(b).
For our fourth and final verification, it suffices [again by invoking (5.19)] to establish

the summability of

n2ρ−4

[
n−1∑
k=1

|tk|
kρ

]2

(5.22)

for any real ρ < 3/2. To do this, we break the sum into
∑

k<nδ and
∑

nδ≤k<n and once

again invoke (5.19). In the range
∑

k<nδ we simply use tk = O
(√

k
)

and note

n2ρ−4

∑
k<nδ

O
(
k(1/2)−ρ

)2

= O

(
n2ρ−4

(
nδ

)3−2ρ
)

= O (nτ )

with τ < −1. In the range
∑

nδ≤k<n we use Cauchy–Schwarz again:

n2ρ−4

 ∑
nδ≤k<n

|tk|
kρ

2

= n2ρ−4n3−2ρ

 ∑
nδ≤k<n

k(1/2)−ρ

n(3/2)−ρ

|tk|
k1/2

2

= O

n−1
∑

nδ≤k<n

k(1/2)−ρ

n(3/2)−ρ

t2k
k

 = O

(
n−1 max

nδ≤k<n

t2k
k

)
,

which is summable by assumption (5.1)(b).

Now we proceed to our “borderline small” case.
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Proof of CLT II (Theorem 5.4). Again we use the method of moments together with
asymptotic transfer results. Given the similarity to the proof of CLT I, we will be brief
here.

Equation (5.9) simply repeats the asymptotic transfer result (4.6). As before, (σ2
n)

satisfies the recurrence (2.3) with (bn) replaced by (rn) of (5.17)–(5.18), where again
µ := K1/(Hm−1) and rj := 0 for 0 ≤ j ≤ m−2. Here the proofs diverge somewhat. The
analogue of Lemma 5.6 is Lemma 5.7 below. Then the asymptotic variance assertions
of CLT II follow immediately from Theorem 4.5(c).

If
∑∞ L2(k)

k < ∞, then from (4.10) applied to L2 it follows that (5.12) satis-
fies (5.13)–(5.14) for k = 1. Then higher moments are treated exactly as in the proof
of CLT I to complete the proof of CLT II.

If
∑∞ L2(k)

k = ∞, then one uses (4.10), Theorem 4.5(d), and induction to show that
the moments (5.12) satisfy

µ̃n(2k) ∼ (2k)!
2kk!

s2k(n), k ≥ 1 (5.23)

and
µ̃n(2k − 1) = o

(
s2k−1(n)

)
, k ≥ 1 (5.24)

and thereby complete the proof of CLT II. We omit the details.

The following cousin to Lemma 5.6 was used in the proof of Theorem 5.4.

Lemma 5.7. In the context of CLT II, the sequence (rn) defined for n ≥ m − 1 by

rn :=
1(
n

m−1

) ∑
j

[
tn + µ̃j1 + · · · + µ̃jm − µ̃n

]2
satisfies

rn ∼ (Hm − 1)σ2nL2(n).

Proof. By (5.9), with θ := (3/2)m−1/(m! − (3/2)m−1), we have

rn ∼ 1(
n

m−1

) ∑
j

[
n1/2L(n) − θj

1/2
1 L(j1) − · · · − θj1/2

m L(jm) + θn1/2L(n)
]2

∼ nL2(n) (m − 1)!
∫ (1 + θ) − θ

m−1∑
i=1

x
1/2
i − θ

(
1 −

m−1∑
i=1

xi

)1/2
2

dx1 · · · dxm−1,

where the integral, call it J , is over (x1, . . . , xm−1) ∈ [0, 1]m−1 with sum not exceeding
unity. To complete the proof we need only show J = (Hm − 1)σ2/(m − 1)!, with σ2

defined at (5.11).
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Indeed,

J =
∫ [

(1 + θ)2 + θ2
m−1∑
i=1

xi + θ2

(
1 −

m−1∑
i=1

xi

)

− 2θ(1 + θ)
m−1∑
i=1

x
1/2
i − 2θ(1 + θ)

(
1 −

m−1∑
i=1

xi

)1/2

+ θ2
∑

i,j: i�=j

x
1/2
i x

1/2
j + 2θ2

(
1 −

m−1∑
i=1

xi

)1/2 m−1∑
i=1

x
1/2
i

 dx1 · · · dxm−1

=
[
(1 + θ)2 + θ2

] 1
(m − 1)!

− 2θ(1 + θ)m
Γ(3/2)

Γ(m + (1/2))
+ θ2m(m − 1)

[Γ(3/2)]2

Γ(m + 1)

=
[
(1 + θ)2 + θ2

] 1
(m − 1)!

− 2θ(1 + θ)m
1

(3/2)m−1
+ θ2 π/4

(m − 2)!
.

Plugging in the value of θ and simplifying, we obtain J = (Hm − 1)σ2/(m − 1)!, as
desired.

5.3 Periodicity for m ≥ 27

If tn = o (
√

n) as in CLT I but m ≥ 27, then the remainder term µ̃n := µn − µ(n + 1)
for the mean—which by (5.2) was o (

√
n) when m ≤ 26—now satisfies, by the ETT

and (4.3) [compare (4.9)]

µ̃n = c2
nλ2−1

Γ(λ2)
+ c3

nλ3−1

Γ(λ3)

+m!
m−1∑
j=2

1
ψ′(λj)

[zn]
(

(1 − z)−λj

∫ z

0
T̂ (ζ)(1 − ζ)λj−1 dζ

)
+o

(√
n
)

+ O
(
nRe λ4−1

)
. (5.25)

Typically this will lead to the negative result that (µ̃n) [and hence also (rn) and
(σ2

n)] suffers from periodicity and that there is no natural distributional limit for nor-
malized Xn. Examples are the space requirement functional studied by Chern and
Hwang [5] (and others before them [18]) and the shape functional [9]. For recent devel-
opments in the case m > 26 for the space requirement see [4].

But it is perhaps difficult to establish a general negative result, due to cancellations.
For example, suppose T (z) equals (1 − z)−1, so that tn ≡ 1, as studied by Chern and
Hwang [5], except perhaps that the initial values t0, . . . , tm−2 are changed. Then

T (m−1)(z) ≡ (m − 1)!(1 − z)−m,
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whence

A(z) =
∞∑

n=1

µnzn =
m−1∑
j=1

cj(1 − z)−λj + (m − 1)!
m−1∑
j=1

(1 − z)−λj

ψ′(λj)

∫ z

0
(1 − ζ)λj−2 dζ

=
m−1∑
j=1

cj(1 − z)−λj − 1
m − 1

(1 − z)−1 − (m − 1)!
m−1∑
j=1

(1 − z)−λj

(1 − λj)ψ′(λj)
.

Now it is possible to choose t0, . . . , tm−2 so that

cj =
(m − 1)!

(1 − λj)ψ′(λj)
, j = 1, . . . , m − 1. (5.26)

In that case A(z) = − 1
m−1(1 − z)−c, whence µ̃n ≡ µn ≡ −1/(m − 1) [and we see that

the chosen values of t0, . . . , tm−2 are all −1/(m − 1)], and we get linear variance and
asymptotic normality, just as in CLT I, for every 2 ≤ m < ∞.

One might object that the above example is artificial, in that the toll sequence
changes sign. But the same calculation show that if the toll sequence is chosen as above
(tn ≡ 1) but with inital values

tj := K(j + 1) − 1
m−1 , 0 ≤ j ≤ m − 2,

then still, for every m ≥ 2, the sequence (µ̃n) is constant, the variance is linear, and
we have asymptotic normality. Further, (tn) is nonnegative provided K ≥ 1/(m − 1).
[We remark in passing that the choice K = 1/(m − 1) leads to the degenerate case
of Remark 5.2.] The sequence (tn) is also nondecreasing (as in most real examples)
provided K ≤ m/(m − 1)2.

6 Moderate and large toll functions

In order to describe the limiting distribution of Xn for moderate and large tolls, we
will introduce a family of random variables Y ≡ Y (β) defined for β > 1/2, β �= 1.
Anticipating Lemma 6.1, we need to consider the distributional equation

Y
L=

m∑
j=1

Sβ
j Yj + 1 (6.1)

Here (Yj)m
j=1 are independent copies of Y and (S1, . . . , Sm) is uniformly distributed on

the (m− 1)-simplex, independent of (Yj)m
j=1. Recall that the (m− 1)-simplex is the set

{(s1, . . . , sm) : sj ≥ 0 for 1 ≤ j ≤ m and s+ = 1},

where s+ denotes
∑m

j=1 sj .
Let U(1), . . . , U(m−1) be the order statistics of a sample of size m−1 from the uniform

distribution on (0, 1). They have joint density

fU(1),...,U(m−1)
(x1, . . . , xm−1) ≡ (m − 1)!1(0 < x1 < · · · < xm−1 < 1)
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with respect to Lebesgue measure on R
m−1, where 1(A) is the indicator of A.

By a change of variables, we find that the joint distribution of the spacings
S1, . . . , Sm, defined, with U(0) := 0 and U(m) := 1, by

Si := U(i) − U(i−1), i = 1, . . . , m,

is uniform over the (m − 1)-simplex:

fS1,...,Sm−1(s1, . . . , sm−1) ≡ (m − 1)!1(sj > 0, j = 1, . . . , m − 1; s+ < 1) .

When rj > −1 for 1 ≤ j ≤ m, observe that

E

 m∏
j=1

S
rj

j

 = (m − 1)!
∫

s1,...,sm−1>0
s+<1

sr1
1 · · · srm−1

m−1 (1 − s+)rm dsm−1 · · · ds1

=: (m − 1)!B(r1 + 1, . . . , rm + 1) (defining B as the integral) (6.2)

= (m − 1)!

∏m
j=1 Γ(rj + 1)

Γ(r1 + · · · + rm + m)
.

Lemma 6.1. Fix β > 1/2 with β �= 1. Then there exists a unique distribution L(Y ) ≡
L(Y (β)) with finite second moment satisfying the distributional identity (6.1).

Proof. We first observe the that mean of any such distribution is determined by (6.1).
Indeed, by taking expectations in (6.1) and using (6.2), we get

µ := EY =
(

1 − m!Γ(β + 1)
Γ(β + m)

)−1

since β �= 1. Thus we can equivalently consider the distributional identity

W
L=

m∑
j=1

Sβ
j Wj + H,

where

H := 1 − µ + µ
m∑

j=1

Sβ
j .

Here W is restricted to have mean 0 and finite second moment, (Wj)m
j=1 are indepen-

dent copies of W , and (S1, . . . , Sm) is uniformly distributed on the (m − 1)-simplex,
independent of (Wj)m

j=1.
We now employ a standard contraction-method argument [23, 24]. Let d2 denote the

metric on M2(0), the space of probability distributions with mean 0 and finite variance,
defined by

d2(G1, G2) := min‖X2 − X1‖2,

taking the minimum over all pairs of random variables X1 and X2 defined on a common
probability space with L(X1) = G1 and L(X2) = G2. Here ‖·‖2 denotes L2-norm.
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Let T be the map

T : M2(0) → M2(0), G �→ L
 m∑

j=1

Sβ
j Xj + H

 ,

where (Xj)m
j=1 are independent with L(Xj) = G, j = 1, . . . , m, and (S1, . . . , Sm) is

uniformly distributed on the (m − 1)-simplex, independent of (Xj)m
j=1. We show that

T is a contraction on M2(0); more precisely, that there exists a ρ < 1 such that

d2(T (L(A)), T (L(B))) ≤ ρd2(L(A),L(B))

for all pairs L(A) and L(B) in M2(0). To bound d2(T (L(A)), T (L(B))), we couple
T (L(A)) and T (L(B)) by taking m independent copies (Aj , Bj) of the d2-optimally
coupled (A, B), an independent (S1, . . . , Sm), and defining

A′ :=
m∑

j=1

Sβ
j Aj + H ∼ T (L(A)), B′ :=

m∑
j=1

Sβ
j Bj + H ∼ T (L(B)).

Now, defining S := (S1, . . . , Sm) and using the law of total variance,

d2(L(T (A)),L(T (B)))2

≤ ‖B′ − A′‖2
2 =

∥∥∥∥∥∥
m∑

j=1

Sβ
j (Bj − Aj)

∥∥∥∥∥∥
2

2

= Var

 m∑
j=1

Sβ
j (Bj − Aj)


= EVar

 m∑
j=1

Sβ
j (Bj − Aj)

∣∣∣∣∣∣S
 + VarE

 m∑
j=1

Sβ
j (Bj − Aj)

∣∣∣∣∣∣S


=
m∑

j=1

(ES2β
j )Var [Bj − Aj ] = d2(L(A),L(B))2

m∑
j=1

ES2β
j = m!

Γ(2β + 1)
Γ(2β + m)

d2(L(A),L(B))2.

We need only verify that

ρ2 := m!
Γ(2β + 1)
Γ(2β + m)

=
m!

(2β + m − 1) · · · (2β + 1)
< 1,

which is true when β > 1/2. The existence and uniqueness of L(Y ) now follows from
the Banach fixed point theorem [24, Theorem 2].

6.1 Moderate toll functions

In the case of moderate toll functions, convergence in distribution and convergence of
all moments can be stated as

Theorem 6.2. If the toll sequence (tn) satisfies

tn ∼ nβL(n) with 1/2 < β < 1,
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where L is a slowly varying function and α < 1 + β, then the mean of the correspond-
ing additive functional Xn on m-ary search trees with the random permutation model
satisfies

µn = µn − (1 + β)m−1

m! − (1 + β)m−1
nβL(n) + o(nβL(n)), µ :=

K1

Hm − 1
, (6.3)

with K1 defined at (2.12). Moreover,

Xn − µn

nβL(n)
L→ Yβ,

with convergence of all moments.

Remark 6.3. It is well known that α < 3/2 for m ≤ 26. In Theorem B.7 we show that
α increases with m. Thus for a fixed β ∈ (1/2, 1), the condition α < 1 + β is equivalent
to m ≤ m0 for some m0 ≥ 26.

Proof of Theorem 6.2. We use the notation introduced in the proof of Theorem 5.1
in Section 5.2. Equation (6.3) is simply a restatement of the asymptotic transfer re-
sult (4.6).

We show that the moments µ̃n(k) satisfy

µ̃n(k) = gkn
kβLk(n) + o(nkβLk(n)) as n → ∞. (6.4)

The claim holds for k = 1 with

g1 := − (1 + β)m−1

m! − (1 + β)m−1
=

(
1 − m!Γ(β + 1)

Γ(β + m)

)−1

. (6.5)

Using (5.16), by induction we get, for k ≥ 2,

rn(k) = o(nkβLk(n))

+
∑∗

k

(
k

k1, . . . , km, km+1

)
(nβL(n))km+1

× 1(
n

m−1

) ∑
j

gk1(j
β
1 L(j1))k1 · · · gkm(jβ

mL(jm))km

= o(nkβLk(n))

+
∑∗

k

(
k

k1, . . . , km, km+1

)
(nβL(n))kgk1 · · · gkm

× 1(
n

m−1

) ∑
j

(
j1

n

)k1β

· · ·
(

jm

n

)kmβ Lk1(j1) · · ·Lkm(jm)
Lk1+···+km(n)

.

But [recall the definition of B at (6.2)]

1(
n

m−1

) ∑
j

(
j1

n

)k1β

· · ·
(

jm

n

)kmβ Lk1(j1) · · ·Lkm(jm)
Lk1+···+km(n)

→ (m−1)!B(k1β +1, . . . kmβ +1)
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so that

rn(k) = o(nkβLk(n))

+ nkβLk(n)(m − 1)!
∑∗

k

(
k

k1, . . . , km, km+1

)
gk1 · · · gkmB(k1β + 1, . . . , kmβ + 1).

Using Theorem 4.5, with v = kβ > 1, we get

µ̃n(k) = o(nkβLk(n))

+nkβLk(n)
(m − 1)!

1 − m!Γ(kβ+1)
Γ(kβ+m)

∑∗

k

(
k

k1, . . . , km, km+1

)
gk1 · · · gkmB(k1β +1, . . . , kmβ +1).

Thus, defining gk recursively as

gk =
(m − 1)!

1 − m!Γ(kβ+1)
Γ(kβ+m)

∑∗

k

(
k

k1, . . . , km+1

)
gk1 · · · gkmB(k1β + 1, . . . , kmβ + 1), (6.6)

with g0 = 1, we see that (6.4) holds for all k ≥ 0.
By Lemma 6.4 (to follow) and the method of moments (cf., e.g., [7, Sections 4.4

and 4.5]), the gk’s are the moments of a uniquely determined distribution, say L(Ŷ ),
and

Xn − µn

nβL(n)
L→ Ŷ

with convergence of all moments. It remains to show that Ŷ
L= Y (β).

Define

Ỹ :=
m∑

j=1

Sβ
j Ŷj + 1, (6.7)

where (Ŷj)m
j=1 are independent copies of Ŷ and (S1, . . . , Sm) is uniformly distributed

on the (m − 1)-simplex, independent of (Ŷj)m
j=1. We will show that Ŷ

L= Ỹ , and then,
by (6.7), L(Ŷ ) satisfies the distributional identity (6.1) and has finite second moment.
By Lemma 6.1, Ŷ

L= Y (β), as desired.
To show Ŷ

L= Ỹ , it suffices to show that Ŷ and Ỹ have the same moments. Letting∑
k denote (as before) the sum over (m+1)-tuples (k1, . . . , km+1) of nonnegative integers
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summing to k, and using (6.7), (6.2), and (6.6),

E Ỹ k =
∑
k

(
k

k1, . . . , km+1

)
E

 m∏
j=1

(Sβ
j Ŷj)kj


=

∑
k

(
k

k1, . . . , km+1

)
(m − 1)!B(k1β + 1, . . . kmβ + 1)gk1 · · · gkm

= (m − 1)!
∑∗

k

(
k

k1, . . . , km+1

)
B(k1β + 1, . . . kmβ + 1)gk1 · · · gkm

+ m!B(kβ + 1, 1, . . . , 1)gk

=
[
1 − m!Γ(kβ + 1)

Γ(kβ + m)

]
gk +

m!Γ(kβ + 1)
Γ(kβ + m)

gk = gk = E Ŷ k,

where (as before)
∑∗

k denotes the same sum as
∑

k with the additional restriction that
ki < k for i = 1, . . . , m.

Lemma 6.4. The moments (gk) uniquely determine the distribution L(Y ).

Proof. Define γk := gk/k!. It suffices to show (by Carleman’s condition) that there
exists an M such that γk ≤ Mk for all k sufficiently large. We proceed by induction.
Indeed, by (6.6) we know

γk =
(m − 1)!

1 − m!Γ(kβ+1)
Γ(kβ+m)

∑∗

k

1
km+1!

 m∏
j=1

γkj

B(k1β + 1, . . . , kmβ + 1)

≤ Mk (m − 1)!

1 − m!Γ(kβ+1)
Γ(kβ+m)

∑∗

k

M−km+1

km+1!
B(k1β + 1, . . . , kmβ + 1)

by the induction hypothesis. So it is certainly sufficient to show that∑∗

k

M−km+1

km+1!
B(k1β + 1, . . . , kmβ + 1)

=
k∑

km+1=0

M−km+1

km+1!
Γ((k − km+1)β + m)−1

∑
0≤k1,...,km<k

k1+···+km=k−km+1

m∏
j=1

Γ(kjβ + 1)

→ 0 as k → ∞. (6.8)

For this, fix a value of km+1 ∈ {0, 1, 2, . . .}, and consider the sum

∑
0≤k1,...,km<k

k1+···+km=k−km+1

m∏
j=1

Γ(kjβ + 1). (6.9)

By log-convexity of Γ [1, 6.4.1], taking I to be (0,∞) and g to be log Γ in Proposi-
tion 3.C.1 of [20], the logarithm of the product in (6.9) is Schur-convex on (0,∞)m.
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Thus applying Proposition 5.C.2 of [20] with m = 0 there, the biggest terms in the sum
correspond to kj = k − km+1 for j equal to some j0 and kj = 0 otherwise; together,
these m terms contribute mΓ((k − km+1)β + 1) to the sum. If k > km+1, there are
other terms, the biggest of which corresponds to having one of the kj ’s be k−km+1 − 1,
one be 1, and the rest be 0. (This follows from Proposition 5.C.1 of [20] with m = 0
and M = k − km+1 − 1 there.) The total number of terms in the sum (6.9) is at most(
m−1+(k−km+1)

m−1

)
. So the remaining contribution to (6.9) is at most(

m − 1 + (k − km+1)
m − 1

)
Γ((k − km+1 − 1)β + 1)Γ(β + 1).

We have found that the left side of (6.8) is bounded by

∞∑
km+1=0

M−km+1

km+1!
1(km+1 ≤ k) f(k − km+1),

where

f(k) ≤ m

(kβ + 1) · · · (kβ + m − 1)
+ Γ(β + 1)

(
m−1+k

m−1

)
Γ((k − 1)β + 1)

Γ(kβ + m)
(6.10)

≤
(
m−1+k

m−1

)
Γ(kβ + 1)

Γ(kβ + m)
=

1
(m − 1)!

(k + 1) · · · (k + (m − 1))
(kβ + 1) · · · (kβ + (m − 1))

, (6.11)

which is a bounded function of k. To apply the dominated convergence theorem, it
suffices to show that the right side of (6.10) tends to 0 as k → ∞, which follows from
Stirling’s approximation and the fact that β > 0.

When tn satisfies the conditions in Theorem 6.2 but α ≥ 1+β then [compare (5.25)],

µ̃n = c2
nλ2−1

Γ(λ2)
+ c3

nλ3−1

Γ(λ3)

+ m!
m−1∑
j=1

1
ψ′(λj)

[zn]
(

(1 − z)−λj

∫ z

0
T̂ (ζ)(1 − ζ)λj−1 dζ

)
+ o(nβ) + O(nRe(λ4−1)),

and typically this leads to periodicity.

6.2 Large toll functions

If tn ∼ nβL(n), where β > 1 and L is slowly varying function, then we have convergence
in distribution for all values of m. We state the result, omitting the proof, as it is very
similar to that of Theorem 6.2.

Theorem 6.5. If the toll sequence (tn) satisfies

tn ∼ nβL(n),with β > 1,
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where L is a slowly varying function, then

Xn

nβL(n)
L→ Y(β)

with convergence of all moments, where L(Y (β)) is the unique distribution satisfy-
ing (6.1).

Presumably, the borderline case tn ∼ nL(n) where L is a slowly varying function can
also be handled using the techniques of this paper, but we have not pursued this. The
specific choice tn ≡ n− (m−1) for n ≥ m−1 corresponds to the well-studied total path
length of a random m-ary search tree. The corresponding additive functional measures
the number of basic operations in m-ary Quicksort. As is well known, the number of
basic operations has mean Θ(n log n) and standard deviation Θ(n). See [13] for details
in this case and [22, Corollary 5.2] for a characterization of the limiting distribution of
the path length.

A Solution of an Euler differential equation

We now provide the proof of equation (2.6) in Theorem 2.2, which states the general
solution of the differential equation (2.4) with initial conditions aj = bj , 0 ≤ j ≤ m− 2.
This linear differential equation can be written in the form

Lg = h (A.1)

where the operator L is defined as

(Lg)(z) := g(m−1)(z) − m!(1 − z)−(m−1)g(z). (A.2)

We seek the solution g = A corresponding to input h = B(m−1).
Equations of the form (A.1)–(A.2) are members of a class known as Euler differential

equations. In this appendix we discuss a general method for solving Euler equations,
restricting attention, for the sake of definiteness and practicality, to (A.1)–(A.2). We
assume that the reader is familiar with the theory of linear differential equations with
constant coefficients (see, e.g., [3]).

For brevity we have omitted several routine proofs. A fuller version of Appendices A
and B.2 may be found in the technical report [11].

The homogeneous solution

The technique for solving Lg = 0 is quite easily summarized: make the change of
variable z = 1 − e−x, that is, x = ln ((1 − z)−1). For notational convenience we will
abbreviate ln ((1 − z)−1) as L(z). Then consider the function g̃ defined by

g̃(x) := g(1 − e−x), i.e., g(z) = g̃(L(z)). (A.3)
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Lemma A.1. The derivatives of g are related to those of g̃ by

g(k)(z) = (1 − z)−k
k∑

j=0

[
k

j

]
g̃(j)(L(z)), (A.4)

where
[
k
j

]
denotes a signless Stirling number of the first kind.

Proof. The proof is a straightforward induction on k using standard identities for the
Stirling numbers [15, § 1.2.6].

The left-hand side of (A.1) can hence be expressed as

(Lg)(z) = (1 − z)−(m−1)


m−1∑
j=0

[
m − 1

j

]
g̃(j)(L(z)) − m!g̃(L(z))


so that solving Lg = 0 is equivalent to solving L̃g̃ = 0, where

L̃g̃(x) :=
m−1∑
j=0

[
m − 1

j

]
g̃(j)(x) − m!g̃(x). (A.5)

But this is a linear differential equation with constant coefficients. Its indicial polyno-
mial, or characteristic polynomial, is

ψm(λ) ≡ ψ(λ) :=
m−1∑
j=0

[
m − 1

j

]
λj − m! = λm−1 − m!, (A.6)

the last equality following from [15, 1.2.6-(44)]. For more on this polynomial see Ap-
pendix B. From the discussion in [17] it follows that there are m − 1 distinct (and
nonzero) roots of ψ, call them λ1, . . . , λm−1 arranged in nonincreasing order of real
parts. Thus the functions exp (λjx) are m − 1 linearly independent solutions of (A.5)
and hence the functions (1 − z)−λj form a basis of solutions to Lg = 0.

A particular solution

Lemma A.2. The particular solution to Lg = h with vanishing initial conditions
(through order m − 2) is

gp(z) =
m−1∑
j=1

(1 − z)−λj

ψ′(λj)

∫ z

0
h(ζ)(1 − ζ)λj+m−2 dζ.

The initial conditions

Having computed a basis of solutions to the homogeneous equation and a particular
solution to the inhomogeneous equation, so far we have established equation (2.6) in
Theorem 2.2 modulo determination of the coefficients c1, . . . , cm−1 at (2.9).

The fact that the initial conditions for gp vanish make it simple to solve Lg = h
for specified initial conditions: One need only match up the initial conditions of the
homogeneous solutions.
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Proposition A.3. If the general complementary solution to Lg = h is written in the
form

gc(z) =
m−1∑
j=1

Aj(1 − z)−λj , (A.7)

then the constants Aj are given by

Aj =
m!

ψ′(λj)

m−2∑
k=0

g
(k)
c (0)

λk+1
j

, j = 1, . . . , m − 1.

B Properties of the indicial polynomial

The indicial polynomial
ψ(λ) ≡ ψm(λ) := λm−1 − m! (B.1)

plays an important role in the analysis of random m-ary search trees. We will enumerate
a few useful identities involving the polynomial in this appendix.

It is well known [17, Chapter 3] that ψm has m−1 distinct roots 2 = λ1, λ2, . . . , λm−1

listed in nonincreasing order of real part. As in [17, Chapter 3] we introduce

α ≡ αm := max
2≤j≤m−1

Re (λj);

that is, α is the second largest real part among all the roots of the indicial polyno-
mial (B.1). We list some important properties of the roots of (B.1) stated in [17, §3.3]:

(i) The number −m is a root if and only if m is odd. All other roots of ψ(λ) are
simple, non-real roots.

(ii) No two roots have the same real part unless they are mutually conjugate. (This
follows from the strict increasingness of |(s + it)m−1| in |t|.)

B.1 Monotonicity of α in m

One can check easily that for 3 ≤ m ≤ 6, α is strictly increasing in m. We will now prove
this fact (Theorem B.7) for all m ≥ 3. To do so we build upon ideas in Appendix A
of [19].

Claim B.1. For any m ≥ 6 and −∞ < x < 2,

gm(x) := inf{y > 0 : (2 − x + iy)(3 − x + iy) . . . (m − x + iy) is positive real} (B.2)

is positive and finite, and the infimum is achieved.

Proof. If z = 2 − x + iy with −∞ < x < 2 and y ≥ 0, then

m∑
j=2

arg(j − x + iy) =
m∑

j=2

arctan
y

j − x
.



30

This last expression is strictly increasing in y ≥ 0, with value 0 at 0 and (for m ≥ 6)
limit

m∑
j=2

π

2
= (m − 1)

π

2
≥ 5π

2

as y → ∞. It is therefore clear that gm(x) is positive and finite and in fact is charac-
terized as the unique root to

m∑
j=2

arctan
gm(x)
j − x

= 2π.

The set on the right in (B.2) is discrete, and gm(x) is its smallest element.

Claim B.2. The function gm in (B.2) is (for m ≥ 6) strictly decreasing in −∞ < x < 2.

Proof. If −∞ < x1 < x2 < 2, then

2π =
m∑

j=2

arctan
gm(x1)
j − x1

<
m∑

j=2

arctan
gm(x1)
j − x2

,

so gm(x2) < gm(x1).

Claim B.3. The function gm in (B.2) is (for m ≥ 6) continuous in −∞ < x < 2.

Proof. Let −∞ < x1 < x2 < 2. In Claim B.2 we have seen gm(x2) < gm(x1). To
complete the proof of Claim B.3, we will show that

gm(x2) ≥ 2 − x2

2 − x1
gm(x1). (B.3)

Indeed,

2π =
m∑

j=2

arctan
gm(x1)
j − x1

=
m∑

j=2

arctan
[
j − x2

j − x1
× gm(x1)

j − x2

]
≥

m∑
j=2

arctan
2−x2
2−x1

gm(x1)
j − x2

,

so (B.3) follows.

Corollary B.4. For any m ≥ 6 and −∞ < x < 2, define

fm(x) := (2 − x + igm(x))(3 − x + igm(x)) . . . (m − x + igm(x)),

which by Claim B.1 is positive real-valued. Then fm is continuous.

Proof. This is immediate from Claim B.3.

Claim B.5. For fixed −∞ < x < 2, gm(x) is strictly decreasing in m ≥ 6.
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Proof. If m ≥ 6, then

2π =
m∑

j=2

arctan
gm(x)
j − x

<

m+1∑
j=2

arctan
gm(x)
j − x

,

so gm+1(x) < gm(x).

Lemma B.6. For m ≥ 4, let λm = αm + iβm (with βm > 0) be a root of the indicial
polynomial ψm with second largest real part. Then |λm + m − 1| < m + 1.

Proof. If |λm + m − 1| ≥ m + 1, then by the triangle inequality |λm + j| > j + 2 for all
j = 0, . . . , m− 2. But then |λm−1

m | =
∏m−2

j=0 |λm + j| > m!, which is a contradiction.

Combining our preliminary results we can now prove the asserted monotonicity of α.

Theorem B.7. The second largest real part, αm, among roots of the indicial polyno-
mial ψm is strictly increasing in m ≥ 3.

Proof. For m ≤ 6 the result is easily verified. We now show that αm+1 > αm for m ≥ 6.
Observe fm+1(0) = |fm+1(0)| > |(m + 1)!| = (m + 1)! and

fm+1(2 − αm) = |fm+1(2 − αm)|
=

∣∣[αm + igm+1(2 − αm)] . . . [αm + (m − 2) + igm+1(2 − αm)]
× [α + (m − 1) + igm+1(2 − αm)]

∣∣
<

∣∣[αm + igm(2 − αm)] . . . [αm + (m − 2) + igm(2 − αm)] (B.4)
× [αm + (m − 1) + igm(2 − αm)]

∣∣
≤ m!|αm + (m − 1) + iβm| (B.5)
= m!|λm + m − 1| < (m + 1)!.

Inequality (B.4) follows from Claim B.5, inequality (B.5) holds since gm(2−αm) ≤ βm,
and the last inequality is a consequence of Lemma B.6. Therefore, by Corollary B.4,
fm+1(x) = (m + 1)! for some 0 < x < 2 − αm, and so λm = (m + 1)! for some λ with
Re λ > αm. That is, αm+1 > αm, as desired.

Remark B.8 (Asymptotics of αm). Using (B.7) and (B.8) from [18] and the characteri-
zation of gm(x) in Claim B.1, we can establish

αm = 2 − (1 + o(1)) 2π2

(
π2

6
− 1

)
ln−3 m,

βm = (1 + o(1)) 2π ln−1 m;

we omit the proof. Thus the Proposition in Appendix B of [18] is asymptotically optimal,
to first order.
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B.2 Identities involving the indicial polynomial

Identity B.9. When λ /∈ {λ1, . . . , λm−1},
m−1∑
j=1

1
(λ − λj)ψ′(λj)

=
1

ψ(λ)

For r and n positive integers, let H
(r)
n denote the rth-order harmonic number

H(r)
n :=

n∑
j=1

1
jr

.

When r = 1 we will use Hn := H
(1)
n for the usual (1st-order) harmonic number.

Identity B.10. For 0 ≤ k ≤ m − 3,

m−1∑
j=1

λk
j

ψ′(λj)
= 0.

Identity B.11.

ψ′(2) = m!(Hm − 1) and ψ′′(2) = m![(Hm − 1)2 − (H(2)
m − 1)].

Identity B.12.
m−1∑
j=2

1
(λj − 2)ψ′(λj)

=
1

2(m!)

[
1 − H

(2)
m − 1

(Hm − 1)2

]
.
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