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Abstract

When algorithms for sorting and searching are applied
to keys that are represented as bit strings, we can quan-
tify the performance of the algorithms not only in terms
of the number of key comparisons required by the algo-
rithms but also in terms of the number of bit compar-
isons. Some of the standard sorting and searching algo-
rithms have been analyzed with respect to key compar-
isons but not with respect to bit comparisons. In this ex-
tended abstract, we investigate the expected number of
bit comparisons required by Quickselect (also known
as Find). We develop exact and asymptotic formulae
for the expected number of bit comparisons required to
find the smallest or largest key by Quickselect and
show that the expectation is asymptotically linear with
respect to the number of keys. Similar results are ob-
tained for the average case. For finding keys of arbitrary
rank, we derive an exact formula for the expected num-
ber of bit comparisons that (using rational arithmetic)
requires only finite summation (rather than such oper-
ations as numerical integration) and use it to compute
the expectation for each target rank.

1 Introduction and Summary

When an algorithm for sorting or searching is analyzed,
the algorithm is usually regarded either as comparing
keys pairwise irrespective of the keys’ internal structure
or as operating on representations (such as bit strings)
of keys. In the former case, analyses often quantify the
performance of the algorithm in terms of the number
of key comparisons required to accomplish the task;
Quickselect (also known as Find) is an example of
those algorithms that have been studied from this point
of view. In the latter case, if keys are represented as bit
strings, then analyses quantify the performance of the
algorithm in terms of the number of bits compared until
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it completes its task. Digital search trees, for example,
have been examined from this perspective.

In order to fully quantify the performance of a sort-
ing or searching algorithm and enable comparison be-
tween key-based and digital algorithms, it is ideal to
analyze the algorithm from both points of view. How-
ever, to date, only Quicksort has been analyzed with
both approaches; see Fill and Janson [3]. Before their
study, Quicksort had been extensively examined with
regard to the number of key comparisons performed by
the algorithm (e.g., Knuth [11], Régnier [16], Rösler
[17], Knessl and Szpankowski [9], Fill and Janson [2],
Neininger and Rüschendorf [15]), but it had not been
examined with regard to the number of bit comparisons
in sorting keys represented as bit strings. In their study,
Fill and Janson assumed that keys are independently
and uniformly distributed over (0,1) and that the keys
are represented as bit strings. [They also conducted the
analysis for a general absolutely continuous distribution
over (0,1).] They showed that the expected number of
bit comparisons required to sort n keys is asymptotically
equivalent to n(lnn)(lg n) as compared to the lead-order
term of the expected number of key comparisons, which
is asymptotically 2n lnn. We use ln and lg to denote
natural and binary logarithms, respectively, and use log
when the base does not matter (for example, in remain-
der estimates).

In this extended abstract, we investigate the
expected number of bit comparisons required by
Quickselect. Hoare [7] introduced this search algo-
rithm, which is treated in most textbooks on algorithms
and data structures. Quickselect selects the m-th
smallest key (we call it the rank-m key) from a set of
n distinct keys. (The keys are typically assumed to be
distinct, but the algorithm still works—with a minor
adjustment—even if they are not distinct.) The algo-
rithm finds the target key in a recursive and random
fashion. First, it selects a pivot uniformly at random
from n keys. Let k denote the rank of the pivot. If
k = m, then the algorithm returns the pivot. If k > m,
then the algorithm recursively operates on the set of
keys smaller than the pivot and returns the rank-m key.
Similarly, if k < m, then the algorithm recursively oper-



ates on the set of keys larger than the pivot and returns
the (k −m)-th smallest key from the subset. Although
previous studies (e.g., Knuth [10], Mahmoud et al. [13],
Grübel and U. Rösler [6], Lent and Mahmoud [12], Mah-
moud and Smythe [14], Devroye [1], Hwang and Tsai [8])
examined Quickselect with regard to key comparisons,
this study is the first to analyze the bit complexity of
the algorithm.

We suppose that the algorithm is applied to n dis-
tinct keys that are represented as bit strings and that
the algorithm operates on individual bits in order to
find a target key. We also assume that the n keys
are uniformly and independently distributed in (0, 1).
For instance, consider applying Quickselect to find the
smallest key among three keys k1, k2, and k3 whose bi-
nary representations are .01001100..., .00110101..., and
.00101010..., respectively. If the algorithm selects k3 as
a pivot, then it compares each of k1 and k2 to k3 in
order to determine the rank of k3. When k1 and k3 are
compared, the algorithm requires 2 bit comparisons to
determine that k3 is smaller than k1 because the two
keys have the same first digit and differ at the second
digit. Similarly, when k2 and k3 are compared, the al-
gorithm requires 4 bit comparisons to determine that
k3 is smaller than k2. After these comparisons, key k3

has been identified as smallest. Hence the search for
the smallest key requires a total of 6 bit comparisons
(resulting from the two key comparisons).

We let µ(m,n) denote the expected number of bit
comparisons required to find the rank-m key in a file
of n keys by Quickselect. By symmetry, µ(m,n) =
µ(n+1−m,n). First, we develop exact and asymptotic
formulae for µ(1, n) = µ(n, n), the expected number
of bit comparisons required to find the smallest key by
Quickselect, as summarized in the following theorem.

Theorem 1.1. The expected number µ(1, n) of bit com-
parisons required by Quickselect to find the smallest
key in a file of n keys that are independently and uni-
formly distributed in (0, 1) has the following exact and
asymptotic expressions:

µ(1, n) = 2n(Hn − 1) + 2
n−1∑
j=2

Bj
n− j + 1−

(
n
j

)
j(j − 1)(1− 2−j)

= cn− 1
ln 2

(lnn)2 −
(

2
ln 2

+ 1
)

lnn+O(1),

where Hn and Bj denote harmonic and Bernoulli num-
bers, respectively, and, with χk := 2πik

ln 2 and γ := Euler’s

constant .= 0.57722, we define

c :=
28
9

+
17− 6γ

9 ln 2

− 4
ln 2

∑
k∈Z\{0}

ζ(1− χk)Γ(1− χk)
Γ(4− χk)(1− χk)

(1.1)

.= 5.27938.

The constant c can alternatively be expressed as

(1.2) c = 2
∞∑
k=0

1 + 2−k
2k∑
j=1

ln
j

2k

 .

It is easily seen that the expression (1.1) is real, even
though it involves the imaginary numbers χk. The
asymptotic formula shows that the expected num-
ber of bit comparisons is asymptotically linear in n
with the lead-order coefficient approximately equal to
5.27938. Hence the expected number of bit comparisons
is asymptotically different from that of key comparisons
required to find the smallest key only by a constant
factor (the expectation for key comparisons is asymp-
totically 2n). Complex-analytic methods are utilized
to obtain the asymptotic formula; in a future paper,
it will be shown how the linear lead-order asymptotics
µ(1, n) ∼ cn [with c given in the form (1.2)] can be ob-
tained without resort to complex analysis. An outline
of the proof of Theorem 1.1 is provided in Section 3.

We also derive exact and asymptotic expressions
for the expected number of bit comparisons for the av-
erage case. We denote this expectation by µ(m̄, n).
In the average case, the parameter m in µ(m,n) is
considered a discrete uniform random variable; hence
µ(m̄, n) = 1

n

∑n
m=1 µ(m,n). The derived asymptotic

formula shows that µ(m̄, n) is also asymptotically linear
in n; see (4.11). More detailed results for µ(m̄, n) are
described in Section 4.

Lastly, in Section 5, we derive an exact expression
of µ(m,n) for each fixed m that is suited for computa-
tions. Our preliminary exact formula for µ(m,n) [shown
in (2.7)] entails infinite summation and integration. As
a result, it is not a desirable form for numerically com-
puting the expected number of bit comparisons. Hence
we establish another exact formula that only requires
finite summation and use it to compute µ(m,n) for
m = 1, . . . , n, n = 2, . . . , 25. The computation leads to
the following conjectures: (i) for fixed n, µ(m,n) [which
of course is symmetric about (n + 1)/2] increases in m
for m ≤ (n+1)/2; and (ii) for fixed m, µ(m,n) increases
in n (asymptotically linearly).

Space limitations on this extended abstract force
us to omit a substantial portion of the details of our
study. We refer the interested reader to our full-length
paper [4].



2 Preliminaries

To investigate the bit complexity of Quickselect, we
follow the general approach developed by Fill and
Janson [3]. Let U1, . . . , Un denote the n keys uniformly
and independently distributed on (0, 1), and let U(i)

denote the rank-i key. Then, for 1 ≤ i < j ≤ n (assume
n ≥ 2),

P{U(i) and U(j) are compared}

=



2
j −m+ 1

if m ≤ i

2
j − i+ 1

if i < m < j

2
m− i+ 1

if j ≤ m.

(2.1)

To determine the first probability in (2.1), note that
U(m), . . . , U(j) remain in the same subset until the first
time that one of them is chosen as a pivot. Therefore,
U(i) and U(j) are compared if and only if the first
pivot chosen from U(m), . . . , U(j) is either U(i) or U(j).
Analogous arguments establish the other two cases.

For 0 < s < t < 1, it is well known that the
joint density function of U(i) and U(j) is given by

fU(i),U(j)(s, t) :=
(

n

i− 1, 1, j − i− 1, 1, n− j

)
×si−1(t− s)j−i−1(1− t)n−j .(2.2)

Clearly, the event that U(i) and U(j) are compared
is independent of the random variables U(i) and U(j).
Hence, defining

P1(s, t,m, n) :=
∑

m≤i<j≤n

2
j −m+ 1

fU(i),U(j)(s, t),

(2.3)

P2(s, t,m, n) :=
∑

1≤i<m<j≤n

2
j − i+ 1

fU(i),U(j)(s, t),

(2.4)

P3(s, t,m, n) :=
∑

1≤i<j≤m

2
m− i+ 1

fU(i),U(j)(s, t),

(2.5)

P (s, t,m, n) := P1(s, t,m, n) + P2(s, t,m, n)
+P3(s, t,m, n)(2.6)

[the sums in (2.3)–(2.5) are double sums over i and
j], and letting β(s, t) denote the index of the first bit

at which the keys s and t differ, we can write the
expectation µ(m,n) of the number of bit comparisons
required to find the rank-m key in a file of n keys as

µ(m,n) =
∫ 1

0

∫ 1

s

β(s, t)P (s, t,m, n) dt ds

=
∞∑
k=0

2k∑
l=1

∫ (l− 1
2 )2−k

(l−1)2−k

∫ l2−k

(l− 1
2 )2−k

(k + 1)(2.7)

×P (s, t,m, n) dt ds;

in this expression, note that k represents the last bit at
which s and t agree.

3 Analysis of µ(1, n)
In Section 3.1, we outline a derivation of the exact
expression for µ(1, n) shown in Theorem 1.1; see the
full paper [4] for the numerous suppressed details of
the various computations. In Section 3.2, we prove the
asymptotic result asserted in Theorem 1.1.

3.1 Exact Computation of µ(1, n) Since the con-
tribution of P2(s, t,m, n) or P3(s, t,m, n) to P (s, t,m, n)
is zero for m = 1, we have P (s, t, 1, n) = P1(s, t, 1, n)
[see (2.4) through (2.6)]. Let x := s, y := t − s, z :=
1− t. Then

P1(s, t, 1, n)

= zn
∑

1≤i<j≤n

2
j

(
n

i− 1, 1, j − i− 1, 1, n− j

)
×xi−1yj−i−1z−j

= 2
n∑
j=2

(−1)j
(
n

j

)
tj−2.

(3.1)

From (2.7) and (3.1),

µ(1, n)

=
n∑
j=2

(−1)j
(
n
j

)
j − 1

∞∑
k=0

(k + 1)2−kj
2k∑
l=1

[lj−1 − (l − 1
2 )j−1].

(3.2)

To further transform (3.2), define

aj,r =



Br
r

(
j − 1
r − 1

)
if r ≥ 2

1
2 if r = 1

1
j if r = 0,

(3.3)



where Br denotes the r-th Bernoulli number. Let
Sn,j :=

∑n
l=1 l

j−1. Then Sn,j =
∑j−1
r=0 aj,rn

j−r (see
Knuth [11]), and

µ(1, n) = 2
n∑
j=2

(−1)j
(
n
j

)
j − 1

∞∑
k=0

(k + 1)2−kj

×
j−1∑
r=1

aj,r2k(j−r)(1− 2−r)

= 2n(Hn − 1) + 2tn,(3.4)

where Hn denotes the n-th harmonic number and

tn :=
n−1∑
j=2

Bj
j(1− 2−j)

[
n−

(
n
j

)
j − 1

− 1

]
.(3.5)

3.2 Asymptotic Analysis of µ(1, n) In order to
obtain an asymptotic expression for µ(1, n), we analyze
tn in (3.4)–(3.5). The following lemma provides an
exact expression for tn that easily leads to an asymptotic
expression for µ(1, n):

Lemma 3.1. Let γ denote Euler’s constant
( .= 0.57722), and define χk := 2πik

ln 2 . Then

tn = −(nHn − n− 1) + a(n− 2)

− 1
2 ln 2

[
H2
n +H(2)

n −
7
2

]
+
(
γ − 1
ln 2

− 1
2

)(
Hn −

3
2

)
+b− Σn,

where

a :=
14
9

+
17− 6γ
18 ln 2

− 2
ln 2

∑
k∈Z\{0}

ζ(1− χk)Γ(1− χk)
Γ(4− χk)(1− χk)

,

b :=
∑

k∈Z\{0}

2ζ(1− χk)Γ(−χk)
(ln 2)(1− χk)Γ(3− χk)

,

Σn :=
∑

k∈Z\{0}

ζ(1− χk)Γ(−χk)Γ(n+ 1)
(ln 2)(1− χk)Γ(n+ 1− χk)

,

and H(2)
n denotes the n-th Harmonic number of order 2,

i.e., H(2)
n :=

∑n
i=1

1
i2 .

The proof of the lemma involves complex-analytic tech-
niques and is rather lengthy, so it is omitted in this
extended abstract; see our full-length paper [4]. From
(3.4), the exact expression for tn also provides an alter-
native exact expression for µ(1, n).

Using Lemma 3.1, we complete the proof of
Theorem 1.1. We know

Hn = lnn+ γ +
1

2n
− 1

12n2
+O(n−4),(3.6)

H
(2)
n =

π2

6
− 1
n

+
1

2n2
+O(n−3).(3.7)

Combining (3.6)–(3.7) with (3.4) and Lemma 3.1, we
obtain an asymptotic expression for µ(1, n):

µ(1, n) = 2an− 1
ln 2

(lnn)2 −
(

2
ln 2

+ 1
)

lnn+O(1).

(3.8)

The term O(1) in (3.8) has fluctuations of small magni-
tude due to Σn, which is periodic in log n with ampli-
tude smaller than 0.00110. Thus, as asserted in Theo-
rem 1.1, the asymptotic slope in (3.8) is

c = 2a

=
28
9

+
17− 6γ

9 ln 2
− 4

ln 2

∑
k∈Z\{0}

ζ(1− χk)Γ(1− χk)
Γ(4− χk)(1− χk)

.

(3.9)

The alternative expression (1.2) for c is established in
a forthcoming revision to our full-length paper [4]; this
was also done independently by Grabner and Prodinger
[5]. As described in their paper, suitable use of Stirling’s
formula with bounds allows one to compute c very
rapidly to many decimal places.

4 Analysis of the Average Case: µ(m̄, n)
4.1 Exact Computation of µ(m̄, n) Here we con-
sider the parameter m in µ(m,n) as a discrete ran-
dom variable with uniform probability mass function
P{m = i} = 1/n, i = 1, 2, . . . , n, and average over m
while the parameter n is fixed. Thus, using the notation
defined in Section 2,

µ(m̄, n) = µ1(m̄, n) + µ2(m̄, n) + µ3(m̄, n),

where, for l = 1, 2, 3,

µl(m̄, n) =
∫ 1

0

∫ 1

s

β(s, t)
1
n

n∑
m=1

Pl(s, t,m, n) dt ds.

(4.1)

Here µ1(m̄, n) = µ3(m̄, n) by an easy symmetric argu-
ment we omit, and so

µ(m̄, n) = 2µ1(m̄, n) + µ2(m̄, n);(4.2)

we will compute µ1(m̄, n) and µ2(m̄, n) exactly in
Section 4.1.1.



4.1.1 Exact Computation of µ(m̄, n) We use the
following lemma in order to compute µ1(m̄, n) exactly:

Lemma 4.1.

∫ 1

0

∫ 1

s

β(s, t)
1
n

n∑
m=2

P1(s, t,m, n) dt ds

= 2
n−1∑
j=2

(−1)j
(
n−1
j

)
j(j − 1)

+
2
9

n−1∑
j=2

(−1)j
(
n−1
j

)
j − 1

−2
n−1∑
j=3

Bj
n− j + 1−

(
n−1
j−1

)
j(j − 1)(j − 2)(1− 2−j)

−2
n−1∑
j=2

(−1)j
(
n−1
j

)
(j + 1)j(j − 1)(1− 2−j)

.

Space limitations on this extended abstract do not allow
us to prove this lemma here; we give the proof in our
full-length paper [4]. Since

µ1(m̄, n) =
1
n
µ(1, n)

+
∫ 1

0

∫ 1

s

β(s, t)
1
n

n∑
m=2

P1(s, t,m, n) dt ds,

it follows from (3.4) and Lemma 4.1 that

µ1(m̄, n) = n− 1− 4
n∑
j=3

(−1)j
(
n−1
j−1

)
j(j − 1)(j − 2)

+
2
n

n−1∑
j=2

Bj
n− j + 1−

(
n
j

)
j(j − 1)(1− 2−j)

+
2
9

n−1∑
j=2

(−1)j
(
n−1
j

)
j − 1

−2
n−1∑
j=3

Bj
n− j + 1−

(
n−1
j−1

)
j(j − 1)(j − 2)(1− 2−j)

−2
n−1∑
j=2

(−1)j
(
n−1
j

)
(j + 1)j(j − 1)(1− 2−j)

.(4.3)

Similarly, after laborious calculations, one can show that

µ2(m̄, n) = − 4
n

n∑
j=2

(−1)j
(
n
j

)
j(j − 1)[1− 2−(j−1)]

+ 2(n− 1).

(4.4)

From (4.2)–(4.4), we obtain

µ(m̄, n)

= 2(n− 1)− 8
n∑
j=3

(−1)j
(
n−1
j−1

)
j(j − 1)(j − 2)

+
4
n

n−1∑
j=2

Bj
n− j + 1−

(
n
j

)
j(j − 1)(1− 2−j)

+
4
9

n−1∑
j=2

(−1)j
(
n−1
j

)
j − 1

−4
n−1∑
j=3

Bj
n− j + 1−

(
n−1
j−1

)
j(j − 1)(j − 2)(1− 2−j)

−4
n−1∑
j=2

(−1)j
(
n−1
j

)
(j + 1)j(j − 1)(1− 2−j)

− 4
n

n∑
j=2

(−1)j
(
n
j

)
j(j − 1)[1− 2−(j−1)]

+ 2(n− 1).(4.5)

We rewrite or combine some of the terms in (4.5) for
the asymptotic analysis of µ(m̄, n) described in the next
section. We define

F1(n) :=
n∑
j=3

(−1)j
(
n
j

)
(j − 1)(j − 2)

,

F2(n) :=
n−1∑
j=2

Bj
j(1− 2−j)

[
n−

(
n
j

)
j − 1

− 1

]
,

F3(n) :=
n−1∑
j=2

(−1)j
(
n−1
j

)
j − 1

F4(n) :=
n−1∑
j=3

Bj
j(j − 1)(1− 2−j)

[
n− 1−

(
n−1
j−1

)
j − 2

− 1

]
,

F5(n) :=
n∑
j=3

(−1)j
(
n
j

)
j(j − 1)(j − 2)[1− 2−(j−1)]

.

Then

µ(m̄, n) = 2(n− 1)− 8
nF1(n) + 4

nF2(n) + 4
9F3(n)

−4F4(n) + 8
nF5(n).(4.6)

4.2 Asymptotic Analysis of µ(m̄, n) We derive
an asymptotic expression for µ(m̄, n) shown in (4.6).



Routine arguments show that

F1(n) = −1
2
n2 lnn+

(
5
4
− γ

2

)
n2

−n lnn+
n2

2(n− 1)
− (γ + 1)n+O(1),(4.7)

F3(n) = n lnn+ (γ − 1)n− lnn+O(1),
(4.8)

F4(n) =
1
9
n lnn+

(
ã+

1
9
γ − 1

9

)
n+

8
9

lnn+O(1),

(4.9)

F5(n) = −1
2
n2 lnn+

3 + ln 2− γ
2

n2 − 1
2 ln 2

n(lnn)2

+
(

1
ln 2
− 1

2

)
n lnn+O(n),(4.10)

where

ã :=
7

36 ln 2
− 41

72
− γ

12 ln 2

−
∑

k∈Z\{0}

ζ(1− χk)Γ(1− χk)
(ln 2)(2− χk)Γ(4− χk)

.

Since F2(n) is equal to tn, which is defined at (3.5) and
analyzed in Section 3.2, we already have an asymptotic
expression for F2(n). Therefore, from (4.6)–(4.10), we
obtain the following asymptotic formula for µ(m̄, n):

µ(m̄, n) = 4(1 + ln 2− ã)n− 4
ln 2

(lnn)2

+4
(

2
ln 2
− 1
)

lnn+O(1).(4.11)

The asymptotic slope 4(1 + ln 2 − ã) is approximately
8.20731. We have not (yet) sought an alternative form
for ã like that for c in (1.2).

5 Derivation of a Closed Formula for µ(m,n)
The exact expression for µ(m,n) obtained in Section 2
[see (2.7)] involves infinite summation and integration.
Hence it is not a preferable form for numerically com-
puting the expectation. In this section, we establish
another exact expression for µ(m,n) that only involves
finite summation. We also use the formula to compute
µ(m,n) for m = 1, . . . , n, n = 2, . . . , 20.

As described in Section 2, it follows from equa-
tions (2.6)–(2.7) that

µ(m,n) = µ1(m,n) + µ2(m,n) + µ3(m,n),

where, for q = 1, 2, 3,

µq(m,n) :=
∞∑
k=0

2k∑
l=1

∫ (l− 1
2 )2−k

s=(l−1)2−k

∫ l2−k

t=(l− 1
2 )2−k

(k + 1)

×Pq(s, t,m, n) dt ds.(5.1)

The same technique can be applied to eliminate the infi-
nite summation and integration from each µq(m,n). We
describe the technique for obtaining a closed expression
of µ1(m,n).

First, we transform P1(s, t,m, n) shown in (2.3)
so that we can eliminate the integration in µ1(m,n).
Define

C1(i, j) := I{1 ≤ m ≤ i < j ≤ n}

× 2
j −m+ 1

(
n

i− 1, 1, j − i− 1, 1, n− j

)
,(5.2)

where I{1 ≤ m ≤ i < j ≤ n} is an indicator
function that equals 1 if the event in braces holds and
0 otherwise. Then

P1(s, t,m, n) =
n−2∑

f=m−1

n−f−2∑
h=0

sf thC2(f, h),

(5.3)

where

C2(f, h) :=
f+1∑
i=m

f+h+2∑
j=f+2

C1(i, j)
(
j − i− 1
f − i+ 1

)

×
(

n− j
h− j + f + 2

)
(−1)h−i−j+1.

Thus, from (5.1) and (5.3), we can eliminate the inte-
gration in µ1(m,n) and express it using polynomials in
l:

µ1(m,n)

=
n−2∑

f=m−1

n−f−2∑
h=0

C3(f, h)
∞∑
k=0

(k + 1)

×
2k∑
l=1

2−k(f+h+2)[lh+1 − (l − 1
2 )h+1]

×[(l − 1
2 )f+1 − (l − 1)f+1],(5.4)

where

C3(f, h) :=
1

(n+ 1)(f + 1)
C2(f, h).



One can show that[
lh+1 −

(
l − 1

2

)h+1
][(

l − 1
2

)f+1

− (l − 1)f+1

]

=
f+h+1∑
j=1

C4(f, h, j)lj−1,(5.5)

where

C4(f, h, j) := (−1)f+h−j+1

(
1
2

)h−j+2

×
(j−1)

∧
f∑

j′=0
∨

(j−1−h)

(
f + 1
j′

)(
h+ 1

j − 1− j′

)

×

[
1−

(
1
2

)f+1−j′
](

1
2

)j′
.

From (5.4)–(5.5), we obtain

µ1(m,n) =
n−2∑

f=m−1

n−f−2∑
h=0

f+h+1∑
j=1

C5(f, h, j)

×
∞∑
k=0

(k + 1)2−k(f+h+2)
2k∑
l=1

lj−1,

where
C5(f, h, j) := C3(f, h) · C4(f, h, j).

Here, as described in Section 3.1,

2k∑
l=1

lj−1 =
j−1∑
r=0

aj,r2k(j−r),

where aj,r is defined by (3.3). Now define

C6(f, h, j, r) := aj,r C5(f, h, j).

Then

µ1(m,n) =
n−1∑
a=1

C7(a)(1− 2−a)−2,(5.6)

where

C7(a) :=
n−2∑

f=m−1

n−f−2∑
h=α

f+h+1∑
j=β

C6(f, h, j, a+ j − (f + h+ 2)),

in which α := 0
∨

(a−f−1) and β := 1
∨

(f+h+2−a).
The procedure described above can be applied

to derive analogous exact formulae for µ2(m,n) and

µ3(m,n). In order to derive the analogous exact formula
for µ2(m,n), one need only start the derivation by
changing the indicator function in C1(i, j) [see (5.2)]
to I{1 ≤ i < m < j ≤ n} and follow each step of
the procedure; similarly, for µ3(m,n), one need only
start the derivation by changing the indicator function
to I{1 ≤ i < j ≤ m ≤ n}.

Using the closed exact formulae of µ1(m,n),
µ2(m,n), and µ3(m,n), we computed µ(m,n) for n =
2, 3, . . . , 20 and m = 1, 2, . . . , n. Figure 1 shows the
results, which suggest the following: (i) for fixed n,
µ(m,n) [which of course is symmetric about (n+ 1)/2]
increases in m for m ≤ (n + 1)/2; and (ii) for fixed m,
µ(m,n) increases in n (asymptotically linearly).
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Figure 1: Expected number of bit compar-
isons for Quickselect. The closed formulae for
µ1(m,n), µ2(m,n), and µ3(m,n) were used to compute
µ(m,n) for n = 1, 2, . . . , 20 (n represents the number
of keys) and m = 1, 2, . . . , n (m represents the rank of
the target key).

6 Discussion

Our investigation of the bit complexity of Quickselect
revealed that the expected number of bit comparisons
required by Quickselect to find the smallest or largest
key from a set of n keys is asymptotically linear in
n with the asymptotic slope approximately equal to



5.27938. Hence asymptotically it differs from the ex-
pected number of key comparisons to achieve the same
task only by a constant factor. (The expectation for key
comparisons is asymptotically 2n; see Knuth [10] and
Mahmoud et al. [13]). This result is rather contrastive
to the Quicksort case in which the expected number of
bit comparisons is asymptotically n(lnn)(lg n) whereas
the expected number of key comparisons is asymptoti-
cally 2n lnn (see Fill and Janson [3]). Our analysis also
showed that the expected number of bit comparisons
for the average case remains asymptotically linear in n
with the lead-order coefficient approximately equal to
8.20731. Again, the expected number is asymptotically
different from that of key comparisons for the average
case only by a constant factor. (The expected number
of key comparisons for the average case is asymptoti-
cally 3n; see Mahmoud et al. [13]).

Although we have yet to establish a formula
analogous to (3.4) and (4.6) for the expected number
of bit comparisons to find the m-th key for fixed m, we
established an exact expression that only requires finite
summation and used it to obtain the results shown in
Figure 1. However, the formula remains computation-
ally complex. Written as a single expression, µ(m,n) is
a seven-fold sum of rather elementary terms with each
sum having order n terms (in the worst case); in this
sense, the running time of the algorithm for computing
µ(m,n) is of order n7. The expression for µ(m,n) does
not allow us to derive an asymptotic formula for it or to
prove the two intuitively obvious observations described
at the end of Section 5. The situation is substantially
better for the expected number of key comparisons
to find the m-th key from a set of n keys; Knuth
[10] showed that the expectation can be written as
2[n+3+(n+1)Hn− (m+2)Hm− (n+3−m)Hn+1−m].

In this extended abstract, we considered
independent and uniformly distributed keys in (0,1).
In this case, each bit in a bit-string key is 1 with
probability 0.5. In ongoing research, we generalize
the model and suppose that each bit results from an
independent Bernoulli trial with success probability p.
The more general results of that research will further
elucidate the bit complexity of Quickselect and other
algorithms.
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