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Abstract
We consider three classes of random graphs: edge random graphs, vertex
random graphs, and vertex-edge random graphs. Edge random graphs are
Erdős-Rényi random graphs [9, 10], vertex random graphs are generaliza-
tions of geometric random graphs [21], and vertex-edge random graphs
generalize both. The names of these three types of random graphs describe
where the randomness in the models lies: in the edges, in the vertices, or in
both. We show that vertex-edge random graphs, ostensibly the most gen-
eral of the three models, can be approximated arbitrarily closely by vertex
random graphs, but that the two categories are distinct.

1 Introduction
The classic random graphs are those of Erdős and Rényi [9,
10]. In their model, each edge is chosen independently of every
other. The randomness inhabits the edges; vertices simply serve as
placeholders to which random edges attach.

Since the introduction of Erdős-Rényi random graphs, many
other models of random graphs have been developed. For example,
random geometric graphs are formed by randomly assigning points
in a Euclidean space to vertices and then adding edges determin-
istically between vertices when the distance between their assigned
points is below a fixed threshold; see [21] for an overview. For these
random graphs, the randomness inhabits the vertices and the edges
reflect relations between the randomly chosen structures assigned
to them.

Finally, there is a class of random graphs in which randomness
is imbued both upon the vertices and upon the edges. For example,
in latent position models of social networks, we imagine each vertex
as assigned to a random position in a metric “social” space. Then,
given the positions, vertices whose points are near each other are
more likely to be adjacent. See, for example, [2, 13, 17, 18, 20].
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Such random graphs are, roughly speaking, a hybrid of Erdős-Rényi
and geometric graphs.

We call these three categories, respectively, edge random,
vertex random, and vertex-edge random graphs. From their formal
definitions in Section 2, it follows immediately that vertex random
and edge random graphs are instances of the more generous vertex-
edge random graph models. But is the vertex-edge random graph
category strictly more encompassing? We observe in Section 3 that
a vertex-edge random graph can be approximated arbitrarily closely
by a vertex random graph. Is it possible these two categories are, in
fact, the same? The answer is no, and this is presented in Section 4.
Our discussion closes in Section 5 with some open problems. All
nontrivial proofs excluded from this extended abstract can be found
in the corresponding full-length paper [3].

Nowadays, in most papers on random graphs, for each value
of n a distribution is placed on the collection of n-vertex graphs
and asymptotics as n → ∞ are studied. We emphasize that in
this extended abstract, by contrast, the focus is on what kinds of
distributions arise in certain ways for a single arbitrary but fixed
value of n.

2 Random Graphs
For a positive integer n, let [n] = {1,2, . . . ,n} and let Gn denote the
set of all simple graphs G = (V,E) with vertex set V = [n]. (A
simple graph is an undirected graph with no loops and no parallel
edges.) We often abbreviate the edge (unordered pair) {i, j} as i j or
write i∼ j and say that i and j are adjacent.

When we make use of probability spaces, we omit discussion
of measurability when it is safe to do so. For example, when the
sample space is finite it goes without saying that the corresponding
σ -field is the total σ -field, that is, that all subsets of the sample
space are taken to be measurable.

DEFINITION 2.1. (RANDOM GRAPH) A random graph is a prob-
ability space of the form G = (Gn,P) where n is a positive integer
and P is a probability measure defined on Gn.

In actuality, we should define a random graph as a graph-
valued random variable, that is, as a measurable mapping from
a probability space into Gn. However, the distribution of such a
random object is a probability measure on Gn and is all that is of
interest in this extended abstract, so the abuse of terminology in
Definition 2.1 serves our purposes.

Example 2.1. (ERDŐS-RÉNYI RANDOM GRAPHS) A simple ran-
dom graph is the Erdős-Rényi random graph in the case p = 1
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This is the random graph G = (Gn,P) where

P(G) := 2−(
n
2), G ∈ Gn.

[Here and throughout we abbreviate P({G}) as P(G); this will
cause no confusion.] More generally, an Erdős-Rényi random graph
is a random graph G(n, p) = (Gn,P) where p ∈ [0,1] and

P(G) := p|E(G)|(1− p)(
n
2)−|E(G)|, G ∈ Gn.

This means that the
(n

2

)
potential edges appear independently of

each other, each with probability p.
This random graph model was first introduced by Gilbert [12].

Erdős and Rényi [9, 10], who started the systematic study of random
graphs, actually considered a closely related model with a fixed
number of edges. However, it is now common to call both models
Erdős-Rényi random graphs.

Example 2.2. (SINGLE COIN-FLIP RANDOM GRAPHS) Another
simple family of random graphs is one we call the single coin-flip
family. Here G = (Gn,P) where p ∈ [0,1] and

P(G) :=


p if G = Kn,
1− p if G = Kn,
0 otherwise.

As in the preceding example, each edge appears with probability p;
but now all edges appear or none do.

In the successive subsections we specify our definitions of
edge, vertex, and vertex-edge random graphs.

2.1 Edge random graph In this extended abstract, by an edge
random graph (abbreviated ERG in the sequel) we simply mean a
classical Erdős-Rényi random graph.

DEFINITION 2.2. (EDGE RANDOM GRAPH) An edge random
graph is an Erdős-Rényi random graph G(n, p).

We shall also make use of the following generalization that
allows variability in the edge-probabilities.

DEFINITION 2.3. (GENERALIZED EDGE RANDOM GRAPH) A
generalized edge random graph (GERG) is a random graph for
which the events that individual vertex-pairs are joined by edges
are mutually independent but do not necessarily have the same
probability. Thus to each pair {i, j} of distinct vertices we associate
a probability p(i, j) and include the edge i j with probability p(i, j);
edge random graphs are the special case where p is constant.

Formally, a GERG can be described in the following manner.
Let n be a positive integer and let p : [n] × [n] → [0,1] be a
symmetric function. The generalized edge random graph G(n,p)
is the probability space (Gn,P) with

P(G) := ∏
i< j

i j∈E(G)

p(i, j)× ∏
i< j

i j/∈E(G)

[1−p(i, j)].

We call the graphs in these two definitions (generalized) edge
random graphs because all of the randomness inhabits the (poten-
tial) edges. The inclusion of ERGs in GERGs is strict, as easily
constructed examples show.

GERGs have appeared previously in the literature, e.g. in [1];
see also the next example and Definition 2.7 below.

As discussed in the next example, GERGs have appeared
previously in the literature.

Example 2.3. (STOCHASTIC BLOCKMODEL RANDOM GRAPHS)
A stochastic blockmodel random graph is a GERG in which
the vertex set is partitioned into blocks B1,B2, . . . ,Bb and the
probability that vertices i and j are adjacent depends only on the
blocks in which i and j reside.

A simple example is a random bipartite graph defined by
partitioning the vertex set into B1 and B2 and taking p(i, j) = 0 if
i, j ∈ B1 or i, j ∈ B2, while p(i, j) = p (for some given p) if i ∈ B1
and j ∈ B2 or vice versa.

The concept of blockmodel is interesting and useful when b
remains fixed and n → ∞. Asymptotics of blockmodel random
graphs have been considered, for example, by Söderberg [25].
(He also considers the version where the partitioning is random,
constructed by independent random choices of a type in {1, ...,b}
for each vertex; see Example 2.8.)

Recall, however, that in this extended abstract we hold n
fixed and note that in fact every GERG can be represented as a
blockmodel by taking each block to be a singleton.

A salient feature of Example 2.3 is that vertex labels matter.
Intuitively, we may expect that if all isomorphic graphs are treated
“the same” by a GERG, then it is an ERG. We proceed to formalize
this correct intuition, omitting the simple proof of Proposition 2.1.

DEFINITION 2.4. (ISOMORPHISM INVARIANCE) Let G = (Gn,P)
be a random graph. We say that G is isomorphism-invariant if
for all G,H ∈ Gn we have P(G) = P(H) whenever G and H are
isomorphic.

PROPOSITION 2.1. Let G be an isomorphism-invariant general-
ized edge random graph. Then G = G(n, p) for some n, p. That
is, G is an edge random graph.

2.2 Vertex random graph The concept of a vertex random graph
(abbreviated VRG) is motivated by the idea of a random intersec-
tion graph. One imagines a universe S of geometric objects. A
random S -graph G ∈ Gn is created by choosing n members of S
independently at random1, say S1, . . . ,Sn, and then declaring dis-
tinct vertices i and j to be adjacent if and only if Si ∩ S j 6= /0. For
example, when S is the set of real intervals, one obtains a ran-
dom interval graph [6, 15, 22, 23]; see Example 2.5 for more. In
[11, 16, 24] one takes S to consist of discrete (finite) sets. Ran-
dom chordal graphs can be defined by selecting random subtrees of
a tree [19].

1Of course, some probability distribution must be associated with S .



Notice that for these random graphs, all the randomness lies in
the structures attached to the vertices; once these random structures
have been assigned to the vertices, the edges are determined. In
Definition 2.6 we generalize the idea of a random intersection graph
to other vertex-based representations of graphs; see [29].

DEFINITION 2.5. ((x,φ)-GRAPH) Let n be a positive integer, X
a set, x = (x1, . . . ,xn) a function from [n] into X , and φ : X ×
X →{0,1} a symmetric function. Then the (x,φ)-graph, denoted
G(x,φ), is defined to be the graph with vertex set [n] such that for
all i, j ∈ [n] with i 6= j we have

i j ∈ E if and only if φ(xi,x j) = 1.

Of course, every graph G = (V,E) with V = [n] is an (x,φ)-
graph for some choice of X , x, and φ ; one need only take x to be
the identity function on X := [n] and define

φ(i, j) := 1(i j ∈ E) =

{
1 if i j ∈ E
0 otherwise.

It is also clear that this representation of G as an (x,φ)-graph is far
from unique. The notion of (x,φ)-graph becomes more interesting
when one or more of X , x, and φ are specified.

Example 2.4. (INTERVAL GRAPHS) Take X to be the set of all
real intervals and define

(2.1) φ(J,J′) :=

{
1 if J∩ J′ 6= /0
0 otherwise.

In this case, an (x,φ)-graph is exactly an interval graph.

DEFINITION 2.6. (VERTEX RANDOM GRAPH) To construct a ver-
tex random graph (abbreviated VRG), we imbue X with a proba-
bility measure µ and sample n elements of X independently at
random to get x, and then we build the (x,φ)-graph.

Formally, let n be a positive integer, (X ,µ) a probability
space, and φ : X ×X → {0,1} a symmetric function. The vertex
random graph G(n,X ,µ,φ) is the random graph (Gn,P) with

P(G) :=
∫

1{G(x,φ) = G}µ(dx), G ∈ Gn,

where µ(dx) is shorthand for the product integrator µn(dx) =
µ(dx1) . . .µ(dxn) on X n.

Note that G(·,φ) is a graph-valued random variable defined
on X n. The probability assigned by the vertex random graph to
G ∈ Gn is simply the probability that this random variable takes the
value G.

Example 2.5. (RANDOM INTERVAL GRAPHS) Let X be the set of
real intervals as in Example 2.4, let φ be as in (2.1), and let µ be
a probability measure on X . This yields a VRG that is a random
interval graph.

Example 2.6. (RANDOM THRESHOLD GRAPHS) Let X = [0,1],
let µ be Lebesgue measure, and let φ be the indicator of a given
up-set U in the usual (coordinatewise) partial order � on X ×X
(i.e., a set U such that y ∈U and y≤ z implies z ∈U). This yields a
VRG that is a random threshold graph; see [7].

Example 2.7. (RANDOM GEOMETRIC GRAPHS) Random ge-
ometric graphs are studied extensively in [21]. Such random
graphs are created by choosing n i.i.d. (independent and identically
distributed) points from some probability distribution on Rk. Then,
two vertices are joined by an edge exactly when they lie within a
certain distance, t, of each other.

Expressed in our notation, we let (X ,d) be a metric space
equipped with a probability measure µ and let t > 0 (a threshold).
For points x,y ∈X define

φ(x,y) := 1{d(x,y)≤ t} .

That is, two vertices are adjacent exactly when the distance between
their corresponding randomly chosen points is sufficiently small.

Because the n vertices in a vertex random graph are drawn
i.i.d. from (X ,µ), it is easy to see that the random graph is
isomorphism-invariant.

PROPOSITION 2.2. Every vertex random graph is isomorphism-
invariant.

2.3 Vertex-edge random graphs A generalization both of vertex
random graphs and of edge random graphs are the vertex-edge
random graphs (abbreviated VERGs) of Definition 2.8. First we
generalize Definition 2.5 to allow edge probabilities other than 0
and 1.

DEFINITION 2.7. (RANDOM (x,φ)-GRAPH) Given a positive in-
teger n≥ 1, a set X , and a function φ : X ×X → [0,1], we assign
to each i ∈ [n] a deterministically chosen object xi ∈X . Then, for
each pair {i, j} of vertices, independently of all other pairs, the edge
i j is included in the random (x,φ)-graph with probability φ(xi,x j).

Formally, let x = (x1, . . . ,xn) be a given function from [n]
into X . Then the random (x,φ)-graph, denoted G(x,φ), is defined
to be the random graph (Gn,Px) for which the probability of G ∈ Gn
is given by

Px(G) := ∏
i< j, i∼ j

φ(xi,x j)× ∏
i< j, i6∼ j

[1−φ(xi,x j)].

Notice that G(x,φ) is simply the generalized edge random
graph G(n,p) where p(i, j) := φ(xi,x j) (recall Definition 2.3).

DEFINITION 2.8. (VERTEX-EDGE RANDOM GRAPH) Let n be a
positive integer, (X ,µ) a probability space, and φ : X ×X →
[0,1] a symmetric function. In words, a vertex-edge random graph
is generated like this: First a list of random elements is drawn
i.i.d., with distribution µ , from X ; call the list X = (X1, . . . ,Xn).



Then, conditionally given X, independently for each pair of distinct
vertices i and j we include the edge i j with probability φ(Xi,X j).

Formally, the vertex-edge random graph G(n,X ,µ,φ) is the
random graph (Gn,P) with

P(G) :=
∫

Px(G)µ(dx)

where the integration notation is as in Definition 2.6 and Px is
the probability measure for the random (x,φ)-graph G(x,φ) of
Definition 2.7.

Note that a VRG is the special case of a VERG with φ taking
values in {0,1}.

It can be shown [14] that every VERG can be constructed
with the standard choice X = [0,1] and µ = Lebesgue measure.
However, other choices are often convenient in specific situations.

We note in passing that one could generalize the notions
of VRG and VERG in the same way that edge random graphs
(ERGs) were generalized in Definition 2.3, by allowing different
functions φi j for different vertex pairs {i, j}. But while the notion
of generalized ERG was relevant to the definition of a VERG (recall
the sentence preceding Definition 2.8), we neither study nor employ
generalized VRGs and VERGs in this extended abstract.

Asymptotic properties (as n→∞) of random (x,φ)-graphs and
VERGs have been studied by several authors: see, e.g., [4] and the
references therein. VERGs are also important in the theory of graph
limits; see for example [5, 8, 18].

Example 2.8. (FINITE-TYPE VERG) In the special case when X
is finite, X = {1, . . . ,b} say, we thus randomly and independently
choose a type in {1, . . . ,b} for each vertex, with a given distribution
µ; we can regard this as a random partition of the vertex set
into blocks B1, . . . ,Bb (possibly empty, and with sizes governed
by a multinomial distribution). A VERG with X finite can thus
be regarded as a stochastic blockmodel graph with multinomial
random blocks; cf. Example 2.3. Such finite-type VERGs have
been considered by Söderberg [25, 26, 27, 28].

Example 2.9. (RANDOM DOT PRODUCT GRAPHS) In [17, 20]
random graphs are generated by the following two-step process.
First, n vectors (representing n vertices) v1, . . . ,vn are chosen i.i.d.
according to some probability distribution on Rk. With this choice
in place, distinct vertices i and j are made adjacent with probability
vi ·v j. All pairs are considered (conditionally) independently. Care
is taken so that the distribution on Rk satisfies

P
(
vi ·v j /∈ [0,1]

)
= 0.

Random dot product graphs are vertex-edge random graphs
with X = Rk and φ(v,w) = v ·w.

As with vertex random graphs, all vertices are treated “the
same” in the construction of a vertex-edge random graph.

PROPOSITION 2.3. Every vertex-edge random graph is
isomorphism-invariant.

Note that we use the notation G(n,X ,µ,φ) for both VRGs and
VERGs. This is entirely justified because φ takes values in in {0,1}
for VRGs and in [0,1] for VERGs. If perchance the φ function for a
VERG takes only the values 0 and 1, then the two notions coincide.
Hence we have part (b) of the following proposition; part (a) is
equally obvious.

PROPOSITION 2.4.

(a) Every edge random graph is a vertex-edge random graph.

(b) Every vertex random graph is a vertex-edge random graph.

However, not all generalized edge random graphs are vertex-
edge random graphs, as simple counterexamples show.

We now ask whether the converses to the statements in Proposi-
tion 2.4 are true. The converse to Proposition 2.4(a) is false. Indeed,
It is easy to find examples of VERGs that aren’t ERGs:

Example 2.10. We present one small class of examples of VERGs
that are even VRGs, but not ERGs. Consider random interval
graphs [6, 15, 22] G(n,X ,µ,φ) with n ≥ 3, X and φ as in
Example 2.4, and (for i ∈ [n]) the random interval Ji corresponding
to vertex i constructed as [Xi,Yi] or [Yi,Xi], whichever is nonempty,
where X1,Y1, . . . ,Xn,Yn are i.i.d. uniform[0,1] random variables.
From an elementary calculation, independent of n, one finds that
the events {1∼ 2} and {1∼ 3} are not independent.

The main result of this extended abstract (Theorem 4.1; see
also the stronger Theorem 4.2) is that the converse to Proposi-
tion 2.4(b) is also false. The class of vertex random graphs does
not contain the class of vertex-edge random graphs; however, as
shown in the next section, every vertex-edge random graph can be
approximated arbitrarily closely by a vertex random graph.

An overview of the inclusions of these various categories is
presented in Figure 1.

VERG

VRG ERG
VERG = Vertex-Edge Random Graphs
VRG = Vertex Random Graphs
ERG = Edge Random Graphs

All Random Graphs

Figure 1: Venn diagram of random graph classes. The results of
this extended abstract show that all five regions in the diagram are
nonempty.



3 Approximation
The goal of this section is to show that every vertex-edge random
graph can be closely approximated by a vertex random graph. Our
notion of approximation is based on total variation distance. (This
choice is not important. We consider a fixed n, and the space of
probability measures on Gn is a finite-dimensional simplex, and thus
compact. Hence any continuous metric on the probability measures
on Gn is equivalent to the total variation distance, and can be used
in Theorem 3.1.)

DEFINITION 3.1. (TOTAL VARIATION DISTANCE) Let
G1 = (Gn,P1) and G2 = (Gn,P2) be random graphs on n ver-
tices. We define the total variation distance between G1 and G2 to
be

dTV(G1,G2) :=
1
2 ∑

G∈Gn

|P1(G)−P2(G)| .

Total variation distance can be reexpressed in terms of the
maximum discrepancy of the probability of events.

PROPOSITION 3.1. Let G1 = (Gn,P1) and G2 = (Gn,P2) be ran-
dom graphs on n vertices. Then

dTV(G1,G2) = max
B⊆Gn
|P1(B)−P2(B)| .

THEOREM 3.1. Let G be a vertex-edge random graph and let
ε > 0. There exists a vertex random graph Ĝ with dTV(G,Ĝ) < ε .

The proof of Theorem 3.1 is given in the Appendix.

4 Not all vertex-edge random graphs are vertex random
graphs

In Section 3 (Theorem 3.1) it was shown that every vertex-edge
random graph can be approximated arbitrarily closely by a vertex
random graph. This naturally raises the question of whether every
vertex-edge random graph is a vertex random graph. We originally
believed that some suitable “M = ∞ modification” of the proof of
Theorem 3.1 would provide a positive answer, but in fact the answer
is no:

THEOREM 4.1. Not all vertex-edge random graphs are vertex ran-
dom graphs.

This theorem is an immediate corollary of the following much
stronger result. We say that an ERG G(n, p) is nontrivial when
p /∈ {0,1}.

THEOREM 4.2. If n≥ 4, no nontrivial Erdős-Rényi random graph
is a vertex random graph. In fact, an ERG G(n, p) with n ≥ 4 is
represented as a vertex-edge random graph G(n,X ,µ,φ) if and
only if φ(x,y) = p for µ-almost every x and y.

The first sentence of Theorem 4.2 follows immediately from
the second. The “if” part of the second sentence is trivial (for any
value of n), since φ(x,y) = p clearly gives a representation (which

we shall call the canonical representation) of an ERG as a VERG.
The “only if” part of the second sentence is proved in the full-length
paper [3].

Consider an ERG G(n, p). If n ≥ 4, Theorem 4.2 shows that
G(n, p) is never a VRG if p /∈ {0,1}. Curiously, however, every
G(n, p) with n ≤ 3 is a VRG; in fact, the following stronger result
is true.

THEOREM 4.3. Every vertex-edge random graph with n ≤ 3 is a
vertex random graph.

5 Open problems
Call a VERG G(n,X ,µ,φ) binary if Pr{φ(X1,X2) ∈ {0,1}} = 1
where X1 and X2 are independent draws from µ . Since µ-null sets
do not matter, this amounts to saying that φ gives a representation
of the random graph as a VRG.

In Theorem 4.3 we have seen that every VERG with n≤ 3 is a
VRG, but what is the situation when n≥ 4?

OPEN PROBLEM 5.1. Is there any VRG with n≥ 4 that also has a
non-binary VERG representation?

Theorem 4.2 rules out constant-valued non-binary VERG rep-
resentations φ , and the main goal now is to see what other VERGs
we can rule out as VRGs. In the following proposition, X1 and
X2 (respectively, Y1 and Y2) are independent draws from µ (respec-
tively, ν).

PROPOSITION 5.1. If a VRG G(n,Y ,ν ,ψ) has a representa-
tion as a VERG G(n,X ,µ,φ), then φ is binary if and only if
Eψ2(Y1,Y2) = Eφ 2(X1,X2).

The expression Eφ 2(X1,X2) is the squared Hilbert–Schmidt
norm of the integral operator (T g)(x) :=

∫
φ(x,y)g(y)µ(dy) =

E[φ(x,X)g(X)] and equals the sum ∑i λ 2
i of squared eigenvalues.

So the proposition has the following corollary.

COROLLARY 5.1. If a VRG G(n,Y ,ν ,ψ) has a representation as
a VERG G(n,X ,µ,φ), and if the respective multisets of nonzero
squared eigenvalues of the integral operators associated with ψ

and φ are the same, then φ is binary.

OPEN PROBLEM 5.2. Is there any VERG with n ≥ 4 having two
representations with distinct multisets of nonzero squared eigenval-
ues?

By Corollary 5.1, a positive answer to Open Problem 5.1 would
imply a positive answer to Open Problem 5.2.

Our next result, Proposition 5.2, goes a step beyond Theo-
rem 4.2. We say that φ is of rank r when the corresponding in-
tegral operator has exactly r nonzero eigenvalues (counting multi-
plicities). For φ to be of rank at most 1 it is equivalent that there
exists 0≤ g≤ 1 (µ-a.e.) such that (for µ-almost every x1 and x2)

(5.2) φ(x1,x2) = g(x1)g(x2).



PROPOSITION 5.2. For n≥ 6, no non-binary VERG G(n,X ,µ,φ)
with φ of rank at most 1 is a VRG.

With the hypothesis of Proposition 5.2 strengthened to n ≥ 8,
we can generalize that proposition substantially as follows.

PROPOSITION 5.3. For 1≤ r < ∞ and n≥ 4(r+1), no non-binary
VERG G(n,X ,µ,φ) with φ of rank at most r is a VRG.

Acknowledgment. The authors thank an anonymous reviewer
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A Appendix: Proof of Theorem 3.1
To prove Theorem 3.1 we use the following simple birthday-
problem subadditivity upper bound. Let M be a positive integer.

LEMMA A.1. Let A = (A1,A2, . . . ,An) be a random sequence of
integers with each Ai chosen independently and uniformly from [M].
Then

P{A has a repetition} ≤ n2

2M
.

Proof of Theorem 3.1. Let G be a vertex-edge random graph on n
vertices and let ε > 0. Let M be a large positive integer. (We
postpone our discussion of just how large to take M until needed.)

The vertex-edge random graph G can be written G =
G(n,X ,µ,φ) for some set X and mapping φ : X ×X → [0,1].

We construct a vertex random graph Ĝ = G(n,Y ,ν ,ψ) as
follows. Let Y := X × [0,1]M× [M]; that is, Y is the set of ordered
triples (x, f ,a) where x∈X , f ∈ [0,1]M , and a∈ [M]. We endow Y
with the product measure of its factors; that is, we independently
pick x ∈X according to µ , a function f ∈ [0,1][M] uniformly, and
a ∈ [M] uniformly. We denote this measure by ν .

We denote the components of the vector f ∈ [0,1]M by
f (1), . . . , f (M), thus regarding f as a random function from [M]
into [0,1]. Note that for a random f ∈ [0,1]M , the components



f (1), . . . , f (M) are i.i.d. random numbers with a uniform[0,1] dis-
tribution.

Next we define ψ . Let y1,y2 ∈ Y where yi = (xi, fi,ai) (for
i = 1,2). Let

ψ(y1,y2) =


1 if a1 < a2 and φ(x1,x2)≥ f1(a2),
1 if a2 < a1 and φ(x1,x2)≥ f2(a1),
0 otherwise.

Note that ψ maps Y × Y into {0,1} and is symmetric in its
arguments. Therefore Ĝ is a vertex random graph.

We now show that dTV(G,Ĝ) can be made arbitrarily small by
taking M sufficiently large.

Let B⊆ Gn. Recall that

P(B) =
∫

Px(B)µ(dx),

P̂(B) =
∫

1{G(y,ψ) ∈ B}ν(dy) = Pr{G(Y,ψ) ∈ B},

where in the last expression the n random variables comprising
Y = (Y1, . . . ,Yn) are independently chosen from Y , each according
to the distribution ν .

As each Yi is of the form (Xi,Fi,Ai) we break up the integral for
P̂(B) based on whether or not the a-values of the Y s are repetition
free and apply Lemma A.1:

P̂(B) = Pr{G(Y,ψ) ∈ B | A is repetition free}
×Pr{A is repetition free}

+Pr{G(Y,ψ) ∈ B | A is not repetition free}
×Pr{A is not repetition free}

= Pr{G(Y,ψ) ∈ B | A is repetition free}+δ

(6.3)

where |δ | ≤ n2/(2M).
Now, for any repetition-free a, the events {i ∼ j in G(Y,ψ)}

are conditionally independent given X and given A = a, with

Pr{i∼ j in G(Y,ψ) | X, A = a}

=

{
Pr{φ(Xi,X j)≥ Fi(a j) | Xi,X j} if ai < a j

Pr{φ(Xi,X j)≥ Fj(ai) | Xi,X j} if a j < ai

= φ(Xi,X j).

Thus, for any repetition-free a,

Pr{G(Y,ψ) ∈ B | X, A = a}

equals

∑
G∈B

(
∏

i< j, i j∈E(G)
φ(Xi,X j)× ∏

i< j, i j/∈E(G)
[1−φ(Xi,X j)]

)
= PX(B).

Removing the conditioning on X and A, (6.3) thus implies

P̂(B) = P(B)+δ ,

and so |P(B) − P̂(B)| ≤ n2/M for all B ⊆ Gn. Equivalently,
dTV(G,Ĝ)≤ n2/M. Thus we need only choose M > n2/ε .


