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Abstract

We consider three classes of random graphs: edge random graphs, vertex random
graphs, and vertex-edge random graphs. Edge random graphs are Erdős-Rényi random
graphs, vertex random graphs are generalizations of geometric random graphs, and vertex-
edge random graphs generalize both. The names of these three types of random graphs
describe where the randomness in the models lies: in the edges, in the vertices, or in both.
We show that vertex-edge random graphs, ostensibly the most general of the three models,
can be approximated arbitrarily closely by vertex random graphs, but that the two categories
are distinct.

1 Introduction
The classic random graphs are those of Erdős and Rényi [8, 9]. In their model, each edge is
chosen independently of every other. The randomness inhabits the edges; vertices simply serve
as placeholders to which random edges attach.
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Since the introduction of Erdős-Rényi random graphs, many other models of random graphs
have been developed. For example, random geometric graphs are formed by randomly assign-
ing points in a Euclidean space to vertices and then adding edges deterministically between
vertices when the distance between their assigned points is below a fixed threshold; see [20]
for an overview. For these random graphs, the randomness inhabits the vertices and the edges
reflect relations between the randomly chosen structures assigned to them.

Finally, there is a class of random graphs in which randomness is imbued both upon the
vertices and upon the edges. For example, in latent position models of social networks, we
imagine each vertex as assigned to a random position in a metric “social” space. Then, given
the positions, vertices whose points are near each other are more likely to be adjacent. See, for
example, [2, 12, 16, 17, 19]. Such random graphs are, roughly speaking, a hybrid of Erdős-
Rényi and geometric graphs.

We call these three categories, respectively, edge random, vertex random, and vertex-edge
random graphs. From their formal definitions in Section 2, it follows immediately that vertex
random and edge random graphs are instances of the more generous vertex-edge random graph
models. But is the vertex-edge random graph category strictly more encompassing? We observe
in Section 3 that a vertex-edge random graph can be approximated arbitrarily closely by a vertex
random graph. Is it possible these two categories are, in fact, the same? The answer is no, and
this is presented in Section 4. Our discussion closes in Section 5 with some open problems.

Nowadays, in most papers on random graphs, for each value of n a distribution is placed
on the collection of n-vertex graphs and asymptotics as n→ ∞ are studied. We emphasize that
in this paper, by contrast, the focus is on what kinds of distributions arise in certain ways for a
single arbitrary but fixed value of n.

2 Random Graphs
For a positive integer n, let [n] = {1,2, . . . ,n} and let Gn denote the set of all simple graphs
G = (V,E) with vertex set V = [n]. (A simple graph is an undirected graph with no loops and
no parallel edges.) We often abbreviate the edge (unordered pair) {i, j} as i j or write i∼ j and
say that i and j are adjacent.

When we make use of probability spaces, we omit discussion of measurability when it is
safe to do so. For example, when the sample space is finite it goes without saying that the
corresponding σ -field is the total σ -field, that is, that all subsets of the sample space are taken
to be measurable.

Definition 2.1 (Random graph). A random graph is a probability space of the form G = (Gn,P)
where n is a positive integer and P is a probability measure defined on Gn.

In actuality, we should define a random graph as a graph-valued random variable, that is,
as a measurable mapping from a probability space into Gn. However, the distribution of such a
random object is a probability measure on Gn and is all that is of interest in this paper, so the
abuse of terminology in Definition 2.1 serves our purposes.
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Example 2.2 (Erdős-Rényi random graphs). A simple random graph is the Erdős-Rényi random
graph in the case p = 1

2 . This is the random graph G = (Gn,P) where

P(G) := 2−(
n
2), G ∈ Gn.

[Here and throughout we abbreviate P({G}) as P(G); this will cause no confusion.] More
generally, an Erdős-Rényi random graph is a random graph G(n, p) = (Gn,P) where p ∈ [0,1]
and

P(G) := p|E(G)|(1− p)(
n
2)−|E(G)|, G ∈ Gn.

This means that the
(n

2

)
potential edges appear independently of each other, each with probabil-

ity p.
This random graph model was first introduced by Gilbert [11]. Erdős and Rényi [8, 9], who

started the systematic study of random graphs, actually considered the closely related model
G(n,m) with a fixed number of edges. However, it is now common to call both models Erdős-
Rényi random graphs.

Example 2.3 (Single coin-flip random graphs). Another simple family of random graphs is one
we call the single coin-flip family. Here G = (Gn,P) where p ∈ [0,1] and

P(G) :=


p if G = Kn,
1− p if G = Kn,
0 otherwise.

As in the preceding example, each edge appears with probability p; but now all edges appear or
none do.

In the successive subsections we specify our definitions of edge, vertex, and vertex-edge
random graphs.

2.1 Edge random graph
In this paper, by an edge random graph (abbreviated ERG in the sequel) we simply mean a
classical Erdős-Rényi random graph.

Definition 2.4 (Edge random graph). An edge random graph is an Erdős-Rényi random graph
G(n, p).

We shall also make use of the following generalization that allows variability in the edge-
probabilities.

Definition 2.5 (Generalized edge random graph). A generalized edge random graph (GERG)
is a random graph for which the events that individual vertex-pairs are joined by edges are
mutually independent but do not necessarily have the same probability. Thus to each pair {i, j}
of distinct vertices we associate a probability p(i, j) and include the edge i j with probability
p(i, j); edge random graphs are the special case where p is constant.
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Formally, a GERG can be described as follows. Let n be a positive integer and let p :
[n]× [n]→ [0,1] be a symmetric function. The generalized edge random graph G(n,p) is the
probability space (Gn,P) with

P(G) := ∏
i< j

i j∈E(G)

p(i, j)× ∏
i< j

i j/∈E(G)

[1−p(i, j)].

We call the graphs in these two definitions (generalized) edge random graphs because all of
the randomness inhabits the (potential) edges. The inclusion of ERGs in GERGs is strict, as
easily constructed examples show.

GERGs have appeared previously in the literature, e.g. in [1]; see also the next example and
Definition 2.16 below.

Example 2.6 (Stochastic blockmodel random graphs). A stochastic blockmodel random graph
is a GERG in which the vertex set is partitioned into blocks B1,B2, . . . ,Bb and the probability
that vertices i and j are adjacent depends only on the blocks in which i and j reside.

A simple example is a random bipartite graph defined by partitioning the vertex set into B1
and B2 and taking p(i, j) = 0 if i, j ∈ B1 or i, j ∈ B2, while p(i, j) = p (for some given p) if
i ∈ B1 and j ∈ B2 or vice versa.

The concept of blockmodel is interesting and useful when b remains fixed and n → ∞.
Asymptotics of blockmodel random graphs have been considered, for example, by Söderberg
[25]. (He also considers the version where the partitioning is random, constructed by indepen-
dent random choices of a type in {1, ...,b} for each vertex; see Example 2.18.)

Recall, however, that in this paper we hold n fixed and note that in fact every GERG can be
represented as a blockmodel by taking each block to be a singleton.

A salient feature of Example 2.6 is that vertex labels matter. Intuitively, we may expect that
if all isomorphic graphs are treated “the same” by a GERG, then it is an ERG. We proceed to
formalize this correct intuition, omitting the simple proof of Proposition 2.8.

Definition 2.7 (Isomorphism invariance). Let G = (Gn,P) be a random graph. We say that G
is isomorphism-invariant if for all G,H ∈ Gn we have P(G) = P(H) whenever G and H are
isomorphic.

Proposition 2.8. Let G be an isomorphism-invariant generalized edge random graph. Then
G = G(n, p) for some n, p. That is, G is an edge random graph.

2.2 Vertex random graph
The concept of a vertex random graph (abbreviated VRG) is motivated by the idea of a random
intersection graph. One imagines a universe S of geometric objects. A random S -graph
G ∈ Gn is created by choosing n members of S independently at random1, say S1, . . . ,Sn, and
then declaring distinct vertices i and j to be adjacent if and only if Si ∩ S j 6= /0. For example,

1Of course, some probability distribution must be associated with S .
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when S is the set of real intervals, one obtains a random interval graph [5, 14, 22, 23]; see
Example 2.12 for more. In [10, 15, 24] one takes S to consist of discrete (finite) sets. Random
chordal graphs can be defined by selecting random subtrees of a tree [18].

Notice that for these random graphs, all the randomness lies in the structures attached to
the vertices; once these random structures have been assigned to the vertices, the edges are
determined. In Definition 2.11 we generalize the idea of a random intersection graph to other
vertex-based representations of graphs; see [29].

Definition 2.9 ((x,φ)-graph). Let n be a positive integer, X a set, x = (x1, . . . ,xn) a function
from [n] into X , and φ : X ×X → {0,1} a symmetric function. Then the (x,φ)-graph,
denoted G(x,φ), is defined to be the graph with vertex set [n] such that for all i, j ∈ [n] with
i 6= j we have

i j ∈ E if and only if φ(xi,x j) = 1.

Of course, every graph G = (V,E) with V = [n] is an (x,φ)-graph for some choice of X , x,
and φ ; one need only take x to be the identity function on X := [n] and define

φ(i, j) := 1(i j ∈ E) =

{
1 if i j ∈ E
0 otherwise.

It is also clear that this representation of G as an (x,φ)-graph is far from unique. The notion of
(x,φ)-graph becomes more interesting when one or more of X , x, and φ are specified.

Example 2.10 (Interval graphs). Take X to be the set of all real intervals and define

φ(J,J′) :=

{
1 if J∩ J′ 6= /0
0 otherwise.

(1)

In this case, an (x,φ)-graph is exactly an interval graph.

Definition 2.11 (Vertex random graph). To construct a vertex random graph (abbreviated VRG),
we imbue X with a probability measure µ and sample n elements of X independently at
random to get x, and then we build the (x,φ)-graph.

Formally, let n be a positive integer, (X ,µ) a probability space, and φ : X ×X →{0,1} a
symmetric function. The vertex random graph G(n,X ,µ,φ) is the random graph (Gn,P) with

P(G) :=
∫

1{G(x,φ) = G}µ(dx), G ∈ Gn,

where µ(dx) is shorthand for the product integrator µn(dx) = µ(dx1) . . .µ(dxn) on X n.

Note that G(·,φ) is a graph-valued random variable defined on X n. The probability as-
signed by the vertex random graph to G ∈ Gn is simply the probability that this random variable
takes the value G.

Example 2.12 (Random interval graphs). Let X be the set of real intervals as in Example 2.10,
let φ be as in (1), and let µ be a probability measure on X . This yields a VRG that is a random
interval graph.
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Example 2.13 (Random threshold graphs). Let X = [0,1], let µ be Lebesgue measure, and
let φ be the indicator of a given up-set in the usual (coordinatewise) partial order on X ×X .
This yields a VRG that is a random threshold graph; see [6].

Example 2.14 (Random geometric graphs). Random geometric graphs are studied extensively
in [20]. Such random graphs are created by choosing n i.i.d. (independent and identically dis-
tributed) points from some probability distribution on Rk. Then, two vertices are joined by an
edge exactly when they lie within a certain distance, t, of each other.

Expressed in our notation, we let (X ,d) be a metric space equipped with a probability
measure µ and let t > 0 (a threshold). For points x,y ∈X define

φ(x,y) := 1{d(x,y)≤ t} .

That is, two vertices are adjacent exactly when the distance between their corresponding ran-
domly chosen points is sufficiently small.

Because the n vertices in a vertex random graph are drawn i.i.d. from (X ,µ), it is easy to
see that the random graph is isomorphism-invariant.

Proposition 2.15. Every vertex random graph is isomorphism-invariant.

2.3 Vertex-edge random graphs
A generalization both of vertex random graphs and of edge random graphs are the vertex-edge
random graphs (abbreviated VERGs) of Definition 2.17. First we generalize Definition 2.9 to
allow edge probabilities other than 0 and 1.

Definition 2.16 (Random (x,φ)-graph). Given a positive integer n≥ 1, a set X , and a function
φ : X ×X → [0,1], we assign to each i ∈ [n] a deterministically chosen object xi ∈X . Then,
for each pair {i, j} of vertices, independently of all other pairs, the edge i j is included in the
random (x,φ)-graph with probability φ(xi,x j).

Formally, let x = (x1, . . . ,xn) be a given function from [n] into X . Then the random (x,φ)-
graph, denoted G(x,φ), is defined to be the random graph (Gn,Px) for which the probability of
G ∈ Gn is given by

Px(G) := ∏
i< j, i∼ j

φ(xi,x j)× ∏
i< j, i 6∼ j

[1−φ(xi,x j)].

Notice that G(x,φ) is simply the generalized edge random graph G(n,p) where p(i, j) :=
φ(xi,x j) (recall Definition 2.5).

Definition 2.17 (Vertex-edge random graph). Let n be a positive integer, (X ,µ) a probability
space, and φ : X ×X → [0,1] a symmetric function. In words, a vertex-edge random graph is
generated like this: First a list of random elements is drawn i.i.d., with distribution µ , from X ;
call the list X = (X1, . . . ,Xn). Then, conditionally given X, independently for each pair of
distinct vertices i and j we include the edge i j with probability φ(Xi,X j).
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Formally, the vertex-edge random graph G(n,X ,µ,φ) is the random graph (Gn,P) with

P(G) :=
∫

Px(G)µ(dx)

where the integration notation is as in Definition 2.11 and Px is the probability measure for the
random (x,φ)-graph G(x,φ) of Definition 2.16.

Note that a VRG is the special case of a VERG with φ taking values in {0,1}.
It can be shown [13] that every VERG can be constructed with the standard choice X =

[0,1] and µ = Lebesgue measure. However, other choices are often convenient in specific
situations.

We note in passing that one could generalize the notions of VRG and VERG in the same
way that edge random graphs (ERGs) were generalized in Definition 2.5, by allowing different
functions φi j for different vertex pairs {i, j}. But while the notion of generalized ERG was
relevant to the definition of a VERG (recall the sentence preceding Definition 2.17), we neither
study nor employ generalized VRGs and VERGs in this paper.

Asymptotic properties (as n→ ∞) of random (x,φ)-graphs and VERGs have been studied
by several authors: see, e.g., [3] and the references therein. VERGs are also important in the
theory of graph limits; see for example [4, 7, 17].

Example 2.18 (Finite-type VERG). In the special case when X is finite, X = {1, . . . ,b} say,
we thus randomly and independently choose a type in {1, . . . ,b} for each vertex, with a given
distribution µ; we can regard this as a random partition of the vertex set into blocks B1, . . . ,Bb
(possibly empty, and with sizes governed by a multinomial distribution). A VERG with X
finite can thus be regarded as a stochastic blockmodel graph with multinomial random blocks;
cf. Example 2.6. Such finite-type VERGs have been considered by Söderberg [25, 26, 27, 28].

Example 2.19 (Random dot product graphs). In [16, 19] random graphs are generated by the
following two-step process. First, n vectors (representing n vertices) v1, . . . ,vn are chosen i.i.d.
according to some probability distribution on Rk. With this choice in place, distinct vertices i
and j are made adjacent with probability vi · v j. All pairs are considered (conditionally) inde-
pendently. Care is taken so that the distribution on Rk satisfies

P
(
vi ·v j /∈ [0,1]

)
= 0.

Random dot product graphs are vertex-edge random graphs with X = Rk and φ(v,w) =
v ·w.

As with vertex random graphs, all vertices are treated “the same” in the construction of a
vertex-edge random graph.

Proposition 2.20. Every vertex-edge random graph is isomorphism-invariant.

This implies that not every random graph is a VERG. A more interesting reason for this is
that every VERG with n≥ 4 has the property that the events {1∼ 2} and {3∼ 4} are indepen-
dent.
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Example 2.21. The random graph G(n,m) considered by Erdős and Rényi [8, 9] has vertex set
[n] and m edges, with all such graphs having the same probability. If n ≥ 4 and 0 < m <

(n
2

)
,

then the events {1∼ 2} and {3∼ 4} are negatively correlated, and thus G(n,m) is not a VERG.
[It can be shown, using Theorem 4.4, that if 0 < m <

(n
2

)
, then G(n,m) is not a VERG also

when n < 4.]

Note that we use the notation G(n,X ,µ,φ) for both VRGs and VERGs. This is entirely
justified because φ takes values in in {0,1} for VRGs and in [0,1] for VERGs. If perchance
the φ function for a VERG takes only the values 0 and 1, then the two notions coincide. Hence
we have part (b) of the following proposition; part (a) is equally obvious.

Proposition 2.22.

(a) Every edge random graph is a vertex-edge random graph.

(b) Every vertex random graph is a vertex-edge random graph.

However, not all generalized edge random graphs are vertex-edge random graphs, as simple
counterexamples show.

We now ask whether the converses to the statements in Proposition 2.22 are true. The
converse to Proposition 2.22(a) is false. Indeed, it is easy to find examples of VERGs that are
not ERGs:

Example 2.23. We present one small class of examples of VERGs that are even VRGs, but not
ERGs. Consider random interval graphs [5, 14, 22] G(n,X ,µ,φ) with n≥ 3, X and φ as in
Example 2.10, and (for i ∈ [n]) the random interval Ji corresponding to vertex i constructed as
[Xi,Yi] or [Yi,Xi], whichever is nonempty, where X1,Y1, . . . ,Xn,Yn are i.i.d. uniform[0,1] random
variables. From an elementary calculation, independent of n, one finds that the events {1∼ 2}
and {1∼ 3} are not independent.

The main result of this paper (Theorem 4.1; see also the stronger Theorem 4.2) is that
the converse to Proposition 2.22(b) is also false. The class of vertex random graphs does not
contain the class of vertex-edge random graphs; however, as shown in the next section, every
vertex-edge random graph can be approximated arbitrarily closely by a vertex random graph.

An overview of the inclusions of these various categories is presented in Figure 1. The
intersection VRG ∩ ERG is nonempty but not very interesting; by Theorems 4.2 and 4.4, the
random graphs that are both ERG and VRG are just G(n, p) with n≤ 3 or p = 0 or p = 1. The
other regions in Figure 1 are nonempty by Examples 2.21, 5.7, 2.23, and Theorem 4.2.

3 Approximation
The goal of this section is to show that every vertex-edge random graph can be closely ap-
proximated by a vertex random graph. Our notion of approximation is based on total variation
distance. (This choice is not important. We consider a fixed n, and the space of probability mea-
sures on Gn is a finite-dimensional simplex, and thus compact. Hence any continuous metric on
the probability measures on Gn is equivalent to the total variation distance, and can be used in
Theorem 3.3.)
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VERG

VRG ERG
VERG = Vertex-Edge Random Graphs
VRG = Vertex Random Graphs
ERG = Edge Random Graphs

Isomorphism-Invariant Random Graphs

Figure 1: Venn diagram of random graph classes. The results of this paper show that all five
regions in the diagram are nonempty.

Definition 3.1 (Total variation distance). Let G1 = (Gn,P1) and G2 = (Gn,P2) be random graphs
on n vertices. We define the total variation distance between G1 and G2 to be

dTV(G1,G2) =
1
2 ∑

G∈Gn

|P1(G)−P2(G)| .

Total variation distance can be reexpressed in terms of the maximum discrepancy of the
probability of events.

Proposition 3.2. Let G1 = (Gn,P1) and G2 = (Gn,P2) be random graphs on n vertices. Then

dTV(G1,G2) = max
B⊆Gn
|P1(B)−P2(B)| .

Theorem 3.3. Let G be a vertex-edge random graph and let ε > 0. There exists a vertex random
graph Ĝ with dTV(G,Ĝ) < ε .

We use the following simple birthday-problem subadditivity upper bound. Let M be a posi-
tive integer.

Lemma 3.4. Let A = (A1,A2, . . . ,An) be a random sequence of integers with each Ai chosen
independently and uniformly from [M]. Then

P{A has a repetition} ≤ n2

2M
.
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Proof of Theorem 3.3. Let G be a vertex-edge random graph on n vertices and let ε > 0. Let M
be a large positive integer. (We postpone our discussion of just how large to take M until
needed.)

The vertex-edge random graph G can be written G = G(n,X ,µ,φ) for some set X and
mapping φ : X ×X → [0,1].

We construct a vertex random graph Ĝ = G(n,Y ,ν ,ψ) as follows. Let Y := X × [0,1]M×
[M]; that is, Y is the set of ordered triples (x, f ,a) where x ∈X , f ∈ [0,1]M, and a ∈ [M].
We endow Y with the product measure of its factors; that is, we independently pick x ∈X
according to µ , a function f ∈ [0,1][M] uniformly, and a ∈ [M] uniformly. We denote this
measure by ν .

We denote the components of the vector f ∈ [0,1]M by f (1), . . . , f (M), thus regarding f
as a random function from [M] into [0,1]. Note that for a random f ∈ [0,1]M, the components
f (1), . . . , f (M) are i.i.d. random numbers with a uniform[0,1] distribution.

Next we define ψ . Let y1,y2 ∈ Y where yi = (xi, fi,ai) (for i = 1,2). Let

ψ(y1,y2) =


1 if a1 < a2 and φ(x1,x2)≥ f1(a2),
1 if a2 < a1 and φ(x1,x2)≥ f2(a1),
0 otherwise.

Note that ψ maps Y ×Y into {0,1} and is symmetric in its arguments. Therefore Ĝ is a vertex
random graph.

We now show that dTV(G,Ĝ) can be made arbitrarily small by taking M sufficiently large.
Let B⊆ Gn. Recall that

P(B) =
∫

Px(B)µ(dx),

P̂(B) =
∫

1{G(y,ψ) ∈ B}ν(dy) = Pr{G(Y,ψ) ∈ B},

where in the last expression the n random variables comprising Y = (Y1, . . . ,Yn) are indepen-
dently chosen from Y , each according to the distribution ν .

As each Yi is of the form (Xi,Fi,Ai) we break up the integral for P̂(B) based on whether or
not the a-values of the Y s are repetition free and apply Lemma 3.4:

P̂(B) = Pr{G(Y,ψ) ∈ B | A is repetition free}Pr{A is repetition free}
+Pr{G(Y,ψ) ∈ B | A is not repetition free}Pr{A is not repetition free}

= Pr{G(Y,ψ) ∈ B | A is repetition free}+δ

(2)

where |δ | ≤ n2/(2M).
Now, for any repetition-free a, the events {i∼ j in G(Y,ψ)} are conditionally independent

given X and given A = a, with

Pr{i∼ j in G(Y,ψ) | X, A = a}=

{
Pr{φ(Xi,X j)≥ Fi(a j) | Xi,X j} if ai < a j

Pr{φ(Xi,X j)≥ Fj(ai) | Xi,X j} if a j < ai

= φ(Xi,X j).
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Thus, for any repetition-free a,

Pr{G(Y,ψ) ∈ B | X, A = a}

equals

∑
G∈B

(
∏

i< j, i j∈E(G)
φ(Xi,X j)× ∏

i< j, i j/∈E(G)

[
1−φ(Xi,X j)

])
= PX(B).

Removing the conditioning on X and A, (2) thus implies

P̂(B) = P(B)+δ ,

and so |P(B)− P̂(B)| ≤ n2/M for all B ⊆ Gn. Equivalently, dTV(G,Ĝ)≤ n2/M. Thus we need
only choose M > n2/ε .

4 Not all vertex-edge random graphs are vertex random
graphs

In Section 3 (Theorem 3.3) it was shown that every vertex-edge random graph can be approxi-
mated arbitrarily closely by a vertex random graph. This naturally raises the question of whether
every vertex-edge random graph is a vertex random graph. We originally believed that some
suitable “M = ∞ modification” of the proof of Theorem 3.3 would provide a positive answer,
but in fact the answer is no:

Theorem 4.1. Not all vertex-edge random graphs are vertex random graphs.

This theorem is an immediate corollary of the following much stronger result. We say that
an ERG G(n, p) is nontrivial when p /∈ {0,1}.

Theorem 4.2. If n≥ 4, no nontrivial Erdős-Rényi random graph is a vertex random graph. In
fact, an ERG G(n, p) with n ≥ 4 is represented as a vertex-edge random graph G(n,X ,µ,φ)
if and only if φ(x,y) = p for µ-almost every x and y.

The “if” part of Theorem 4.2 is trivial (for any value of n), since φ(x,y) = p clearly gives a
representation (which we shall call the canonical representation) of an ERG as a VERG.

We establish a lemma before proceeding to the proof of the nontrivial “only if” part of The-
orem 4.2. To set up for the lemma, which relates an expected subgraph count to the spectral de-
composition of a certain integral operator, consider any particular representation G(n,X ,µ,φ)
of a VERG. Let T be the integral operator with kernel φ on the space L2(X ,µ) of µ-square-
integrable functions on X :

(T g)(x) :=
∫

φ(x,y)g(y)µ(dy) = E[φ(x,X)g(X)] (3)

where E denotes expectation and X has distribution µ . Since φ is bounded and µ is a finite
measure, the kernel φ belongs to L2(µ × µ). Integral operators with such kernels are Hilbert–
Schmidt operators, and are thus compact operators. (See e.g. [21, Chapter VI] for the functional
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analysis used here, in particular Theorems VI.23, VI.22, and VI.16.) Moreover, since φ is
symmetric, the integral operator T is self-adjoint: For any g,h ∈ L2(X ,µ),

〈T g,h〉 :=
∫

T g(x)h(x)µ(dx) =
∫∫

φ(x,y)g(y)h(x)µ(dy)µ(dx) = 〈T h,g〉.

It follows that L2(X ,µ) has an orthonormal basis (ψi)i=1,2,... of eigenfunctions for T ; these
satisfy T ψi = λiψi, for some (not necessarily distinct) real eigenvalues λi with λi→ 0 as i→∞.
Then

φ(x,y) =
∞

∑
i=1

λiψi(x)ψi(y) (4)

µ-a.e., with the sum converging in L2. We may assume that λ1 is the largest eigenvalue.
Note that in the special case φ(x,y)≡ p giving the canonical representation of an ERG, we

have λ1 = p, ψ1(x)≡ 1, and λi = 0 for i≥ 2.
Let Nk, 3≤ k≤ n, be the number of rooted k-cycles in G(n,X ,µ,φ), where a (not necessar-

ily induced) rooted cycle is a cycle with a designated start vertex (the root) and a start direction.
In the following we write nk := n(n−1) · · ·(n− k +1) for the kth falling factorial power of n.

Lemma 4.3. In a VERG, with the preceding notation, for 3≤ k ≤ n we have

ENk = nk
∑

i
λ

k
i .

Proof. A rooted k-cycle is given by a sequence of k distinct vertices v1, . . . ,vk with edges vivi+1
(i = 1, . . . ,k−1) and vkv1. Thus, with Tr denoting trace,

ENk = nk E[φ(X1,X2)φ(X2,X3) · · ·φ(Xk,X1)]

= nk
∫
· · ·
∫
X k

φ(x1,x2)φ(x2,x3) · · ·φ(xk,x1)µ(dx1) · · ·µ(dxk)

= nk TrT k = nk
∑

i
λ

k
i .

The reader unfamiliar with standard properties of Hilbert–Schmidt integral operators may wish
to check directly using the expansion (4) that the integral and sum expressions in the last display
are equal.

In the special case φ(x,y) ≡ p of the canonical representation of an ERG, Lemma 4.3 re-
duces to

ENk = nk pk, 3≤ k ≤ n, (5)

which is otherwise clear for an ERG.
Equipped with Lemma 4.3, it is now easy to prove Theorem 4.2.

Proof of Theorem 4.2. In any VERG G(n,X ,µ,φ), the average edge-probability ρ is given by

ρ := Eφ(X1,X2) =
∫ ∫

φ(x,y)µ(dy)µ(dx) = 〈T 1,1〉 ≤ λ1,
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where 1 is the function with constant value 1 and λ1 is the largest eigenvalue of T ; hence

ρ
4 ≤ λ

4
1 ≤∑

i
λ

4
i =

EN4

n4 , (6)

where the equality here comes from Lemma 4.3. If the VERG is an ERG G(n, p), then ρ = p
and by combining (5) and (6) we see that p = ρ = λ1 and λi = 0 for i ≥ 2; hence, by (4),
φ(x,y) = pψ1(x)ψ1(y) for µ-almost every x and y, where ψ1 is a normalized eigenfunction
of T corresponding to eigenvalue λ1 = p. But then

p
∫

ψ
2
1 (x)µ(dx) = p =

∫ ∫
φ(x,y)µ(dy)µ(dx) = p

[∫
ψ1(x)µ(dx)

]2

,

and since there is equality in the Cauchy–Schwarz inequality for ψ1 we see that ψ1 = 1 a.e. or
ψ1 = −1 a.e., and thus φ(x,y) = p for µ-almost every x and y. This establishes the “only if”
assertion in Theorem 4.2; as already noted, the “if” assertion is trivial.

Consider an ERG G(n, p). If n ≥ 4, Theorem 4.2 shows that G(n, p) is never a VRG if
p /∈ {0,1}. Curiously, however, every G(n, p) with n ≤ 3 is a VRG; in fact, the following
stronger result is true.

Theorem 4.4. Every vertex-edge random graph with n≤ 3 is a vertex random graph.

Proof. We seek to represent the given VERG G(n,X ,µ,φ) as a VRG G(n,Y ,ν ,ψ), with ψ

taking values in {0,1}. For n = 1 there is nothing to prove. For n = 2, the only random graphs
of any kind are ERGs G(n, p); one easily checks that Y = {0,1}, ν(1) =

√
p = 1−ν(0), and

ψ(y1,y2) = 1(y1 = y2 = 1) represents G(n, p) as a VRG.
Suppose now that n = 3. The given VERG can be described as choosing X1,X2,X3 i.i.d.

from µ and, independently, three independent uniform[0,1) random variables U12,U13,U23, and
then including each edge i j if and only if the corresponding Ui j satisfies Ui j ≤ φ(Xi,X j). Ac-
cording to Lemma 4.5 to follow, we can obtain such Ui j’s by choosing independent uniform[0,1)
random variables U1,U2,U3 and setting Ui j := Ui⊕U j, where ⊕ denotes addition modulo 1. It
follows that the given VERG is also the VRG G(3,Y ,ν ,ψ), where Y := X × [0,1), ν is the
product of µ and the uniform[0,1) distribution, and, with yi = (xi,ui),

ψ(y1,y2) = 1(u1⊕u2 ≤ φ(x1,x2)). (7)

Lemma 4.5. If U1,U2,U3 are independent uniform[0,1) random variables, then so are U1⊕U2,
U1⊕U3, U2⊕U3, where ⊕ denotes addition modulo 1.

Proof. The following proof seems to be appreciably simpler than a change-of-variables proof.
For other proofs, see Remark 4.7 below. Let J := {0, . . . ,k−1}. First check that, for k odd, the
mapping

(z1,z2,z3) 7→ (z1 + z2,z1 + z3,z2 + z3),
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from J×J×J into J×J×J, with addition here modulo k, is bijective. Equivalently, if U1,U2,U3
are iid uniform[0,1), then the joint distribution of

Z12(k) := bkU1c+ bkU2c,
Z13(k) := bkU1c+ bkU3c,
Z23(k) := bkU2c+ bkU3c

is the same as that of
bkU1c,bkU2c,bkU3c.

Dividing by k and letting k→ ∞ through odd values of k gives the desired result.

Remark 4.6. Theorem 4.4 has an extension to hypergraphs. Define a VERHG (vertex-edge
random hypergraph) on the vertices {1, . . . ,n} in similar fashion to VERGs, except that now
each of the n possible hyperedges joins a subset of vertices of size n−1. Define a VRHG (vertex
random hypergraph) similarly. Then VERHGs and VRHGs are the same, for each fixed n. The
key to the proof is the observation (extending the case n = 3 of Lemma 4.5) that if U1,U2, . . .Un
are i.i.d. uniform[0,1), then the same is true (modulo 1) of S−U1,S−U2, . . . ,S−Un, where
S := U1 +U2 + · · ·+Un. The observation can be established as in the proof of Lemma 4.5, now
by doing integer arithmetic modulo k, where n−1 and k are relatively prime, and passing to the
limit as k→ ∞ through such values. [For example, consider k = m(n−1)+1 and let m→ ∞.]

Remark 4.7. Consider again Lemma 4.5 and its extension in Remark 4.6. Let T = R/Z denote
the circle. We have shown that the mapping u 7→ Au preserves the uniform distribution on Tn,
where for example in the case n = 3 the matrix A is given by

A =

 1 1 0
1 0 1
0 1 1

 .

More generally, the mapping u 7→ Au preserves the uniform distribution on Tn whenever A is
a nonsingular n×n matrix of integers. Indeed, then A : Rn→ Rn is surjective, so A : Tn→ Tn

is surjective; and any homomorphism of a compact group (here Tn) onto a compact group
(here also Tn) preserves the uniform distribution, i.e., the (normalized) Haar measure. (This
follows, e.g., because the image measure is translation invariant.) This preservation can also be
seen by Fourier analysis: For the i.i.d. uniform vector U = (U1, . . . ,Un) and any integer vector
k = (k1, . . . ,kn) 6= 0,

Eexp(2πik ·AU) = Eexp(2πiAT k ·U) = 0

because AT k 6= 0.

Remark 4.8. In this remark we (a) give a spectral characterization of all representations of a
three-vertex ERG G(3, p) as a VERG G(3,X ,µ,φ) and (b) briefly discuss the spectral decom-
position of the “addition modulo 1” kernel specified by (7) when φ(x1,x2)≡ p.

(a) Consider a VERG G(3,X ,µ,φ) representing an ERG G(3, p). It can be shown easily
that p is an eigenvalue (say, λ1 = p) with constant eigenfunction 1. [This can be done by using
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the Cauchy–Schwarz inequality to prove that for any VERG with n ≥ 3 we have the positive
dependence

Pr{1∼ 2 and 1∼ 3} ≥ (Pr{1∼ 2})2, (8)

with equality if and only if the constant function 1 is an eigenfunction of T with eigenvalue
Pr{1∼ 2}; moreover, we have equality in (8) for an ERG. Cf. the proof of Theorem 4.2, where
a similar argument is used for n ≥ 4.] One then readily computes that the expected number of
rooted cycles on three vertices is 6∑λ 3

i = 6p3 [this is Lemma 4.3 and (5), recalling that n = 3]
and similarly that the expected number of rooted edges is 6λ1 = 6p and the expected number of
rooted paths on three vertices is 6λ 2

1 = 6p2. So

∑
i≥2

λ
3
i = 0. (9)

Conversely, suppose that a VERG G(3,X ,µ,φ) has eigenvalue λ1 = p with corresponding
eigenfunction 1, and that (9) holds. Then the expected counts of rooted edges, rooted 3-paths,
and rooted 3-cycles all agree with those for an ERG G(3, p). Since these three expected counts
are easily seen to characterize any isomorphism-invariant random graph model on three vertices,
the VERG represents the ERG G(3, p).

Summarizing, we see that a VERG G(3,X ,µ,φ) represents G(3, p) if and only if λ1 = p
with eigenfunction 1 and (9) holds.

In particular, one can take µ to be the uniform distribution on X = [0,1) and

φ(x1,x2) = g(x1⊕ x2), x1,x2 ∈ [0,1),

for any g ≥ 0 satisfying
∫

g(x)dx = p. It follows by Lemma 4.5 that then G(3,X ,µ,φ) =
G(3, p). Alternatively, we can verify (9) by Fourier analysis as follows.

Let ek(x) = e2πikx. Then

(Tek)(x) =
∫ 1

0
g(x⊕ y)ek(y)dy =

∫ 1

0
g(y)ek(y− x)dy = ĝ(−k)e−k(x), k ∈ Z.

For k = 0, this says again that e0 = 1 is an eigenfunction with eigenvalue ĝ(0) = p. For k ≥
1, since ĝ(k) = ĝ(−k), it follows that if ωk := ĝ(k)/|ĝ(k)| (with ωk := 1 if this expression
would give 0/0), then ωkek±e−k are eigenfunctions with eigenvalues±|ĝ(k)|. Since {ek} is an
orthonormal basis, these eigenfunctions span a dense subspace of L2[0,1), so we have found all
eigenvalues, viz. λ1 = p and ±|ĝ(k)|, k = 1,2, . . . , and (9) follows.

(b) The choice g(x) = 1(x≤ p) in (a) was used at (7) (when the VERG in question there is
an ERG). In this case,

ĝ(k) =
∫ p

0
e−2πikx dx =

1− e−2πikp

2πik
and the multiset of eigenvalues can be listed as (changing the numbering) {λ j : j ∈ Z}, where

λ j :=

{
|1−e−2πi jp|

2π j = |sin(π jp)|
π j , j 6= 0,

p, j = 0.

the electronic journal of combinatorics 16 (2009), #R00 15



5 Open problems
Call a VERG G(n,X ,µ,φ) binary if Pr{φ(X1,X2) ∈ {0,1}} = 1 where X1 and X2 are inde-
pendent draws from µ . Since µ-null sets do not matter, this amounts to saying that φ gives a
representation of the random graph as a VRG. We will make use of the observation that

φ is binary if and only if E[φ(X1,X2)(1−φ(X1,X2))] = 0. (10)

In Theorem 4.4 we have seen that every VERG with n≤ 3 is a VRG, but what is the situation
when n≥ 4?

Open Problem 5.1. Is there any VRG with n≥ 4 that also has a non-binary VERG representa-
tion?

Theorem 4.2 rules out constant-valued non-binary VERG representations φ , and the main
goal now is to see what other VERGs we can rule out as VRGs. In the following proposition,
X1 and X2 (respectively, Y1 and Y2) are independent draws from µ (respectively, ν).

Proposition 5.2. If a VRG G(n,Y ,ν ,ψ) has a representation as a VERG G(n,X ,µ,φ), then φ

is binary if and only if Eψ2(Y1,Y2) = Eφ 2(X1,X2).

Proof. Because G(n,Y ,ν ,ψ) and G(n,X ,µ,φ) represent the same random graph, we have

Eψ(Y1,Y2) = Pr{1∼ 2}= Eφ(X1,X2).

Thus, by (10), φ is binary if and only if

0 = E[ψ(Y1,Y2)(1−ψ(Y1,Y2))] = Eψ(Y1,Y2)−Eψ
2(Y1,Y2)

agrees with
E[φ(X1,X2)(1−φ(X1,X2))] = Eψ(Y1,Y2)−Eφ

2(X1,X2),

i.e., if and only if Eψ2(Y1,Y2) = Eφ 2(X1,X2).

The expression Eφ 2(X1,X2) is the squared Hilbert–Schmidt norm of the operator T defined
at (3) and equals the sum ∑i λ 2

i of squared eigenvalues. So the proposition has the following
corollary.

Corollary 5.3. If a VRG G(n,Y ,ν ,ψ) has a representation as a VERG G(n,X ,µ,φ), and
if the respective multisets of nonzero squared eigenvalues of the integral operators associated
with ψ and φ are the same, then φ is binary.

Open Problem 5.4. Is there any VERG with n ≥ 4 having two representations with distinct
multisets of nonzero squared eigenvalues?
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By Corollary 5.3, a positive answer to Open Problem 5.1 would imply a positive answer to
Open Problem 5.4.

Our next result, Proposition 5.5, goes a step beyond Theorem 4.2. We say that φ is of
rank r when the corresponding integral operator (3) has exactly r nonzero eigenvalues (counting
multiplicities); thus the sum in (4) has r nonzero terms. For φ to be of rank at most 1 it is
equivalent that there exists 0≤ g≤ 1 (µ-a.e.) such that (for µ-almost every x1 and x2)

φ(x1,x2) = g(x1)g(x2). (11)

Proposition 5.5. For n ≥ 6, no non-binary VERG G(n,X ,µ,φ) with φ of rank at most 1 is a
VRG.

Proof. Of course φ cannot be both non-binary and of rank 0. By Corollary 5.3 it suffices to
show, as we will, that

(∗) any VERG-representation G(n,Y ,ν ,ψ) of a VERG G(n,X ,µ,φ) with n ≥ 6
and φ of rank 1 must have the same single nonzero eigenvalue (without multi-
plicity).

Indeed, to prove (∗), express φ as at (11) and let λ1,λ2, . . . denote the eigenvalues correspond-
ing to ψ . By equating the two expressions for ENk obtained by applying Lemma 4.3 both to
G(n,X ,µ,φ) and to G(n,Y ,ν ,ψ), we find, with

c :=
[
Eφ

2(X1,X2)
]1/2

> 0

for shorthand, that
∑

i
λ

k
i = ck, 3≤ k ≤ n. (12)

Applying (12) with k = 4 and k = 6, it follows from Lemma 5.6 to follow (with bi := λ 4
i and

t = 3/2) that ψ is of rank 1, with nonzero eigenvalue c.

The following lemma, used in the proof of Proposition 5.5, is quite elementary and included
for the reader’s convenience.

Lemma 5.6. If b1,b2, . . . form a finite or infinite sequence of nonnegative numbers and t ∈
(1,∞), then (

∑
i

bi

)t
≥∑

i
bt

i,

with strict inequality if more than one bi is positive and the right-hand sum is finite.

Proof. The lemma follows readily in general from the special case of two bs, b1 and b2. Since
the case that b1 = 0 is trivial, we may suppose that b1 > 0. Fix such a b1, and consider the
function

f (b2) := (b1 +b2)t−bt
1−bt

2

of b2 ≥ 0. Then f (0) = 0 and

f ′(b2) = t[(b1 +b2)t−1−bt−1
2 ] > 0.

The result follows.
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Example 5.7. Consider a VERG G(n,X ,µ,φ) with n≥ 6 and φ(x1,x2) = g(x1)g(x2) for some
function g : X → (0,1) that is not µ-a.e. constant. By Proposition 5.5, this is not a VRG.
Furthermore, an elementary calculation shows that Pr(1 ∼ 2) = Pr(1 ∼ 3) =

(∫
g(x)µ(dx)

)2

and

Pr(1∼ 2 and 1∼ 3) =
∫∫∫

g(x1)2g(x2)g(x3)µ(dx1)µ(dx2)µ(dx3)

=
∫

g(x)2
µ(dx)

(∫
g(x)µ(dx)

)2
> Pr(1∼ 2)Pr(1∼ 3);

thus the events {1 ∼ 2} and {1 ∼ 3} are dependent and the VERG is not an ERG. Hence, a
VERG of this type is neither a VRG nor an ERG.

With the hypothesis of Proposition 5.5 strengthened to n≥ 8, we can generalize that propo-
sition substantially as follows.

Proposition 5.8. For 1 ≤ r < ∞ and n ≥ 4(r + 1), no non-binary VERG G(n,X ,µ,φ) with φ

of rank at most r is a VRG.

It suffices to consider φ of rank r exactly. The strategy for proving Proposition 5.8 is essen-
tially the same as for Proposition 5.5: Under the stated conditions on n and r, we will show that
any VERG-representation G(n,Y ,ν ,ψ) of a VERG G(n,X ,µ,φ) with φ of rank r must have
the same finite multiset of nonzero squared eigenvalues; application of Corollary 5.3 then com-
pletes the proof. The following two standard symmetric-function lemmas are the basic tools we
need; for completeness, we include their proofs.

Lemma 5.9. Consider two summable sequences a1,a2, . . . and b1,b2, . . . of strictly positive
numbers; each sequence may have either finite or infinite length. For 1 ≤ k < ∞, define the
elementary symmetric functions

sk := ∑
i1<i2<···<ik

ai1ai2 . . .aik , tk := ∑
j1< j2<···< jk

b j1b j2 . . .b jk . (13)

For any 1 ≤ K < ∞, if ∑i ak
i = ∑ j bk

j for k = 1,2, . . . ,K, then (a) sk = tk for k = 1,2, . . . ,K and
(b) the sequence a has length ≥ K if and only if the sequence b does.

Proof. Clearly all the sums ∑ak
i , ∑bk

j, sk, tk are finite, for any k≥ 1. Using inclusion–exclusion,
each sk can be expressed as a finite linear combination of finite products of ∑i a1

i , ∑i a2
i , . . . ∑i ak

i .
(This is true when all indices i for ai are restricted to a finite range, and so also without such
a restriction, by passage to a limit.) Each tk can be expressed in just the same way, with the
sums ∑ j bm

j substituting for the respective sums ∑i am
i . The assertion (a) then follows; and since

the sequence a has length ≥ K if and only if sK > 0, and similarly for b, assertion (b) also
follows.

Lemma 5.10. Let 1≤K < ∞, and let a1, . . . ,aK and b1, . . . ,bK be numbers. If the sums sk and tk
defined at (13) satisfy sk = tk for k = 1, . . . ,K, then the multisets {a1, . . . ,aK} and {b1, . . . ,bK}
are equal.
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Proof. We remark that the numbers ak and bk need not be positive, and may even be complex.
The result is obvious from the identity

(z−a1) · · ·(z−aK) = zK− s1zK−1 + s2zK−2 + · · ·+(−1)KsK.

Proof of Proposition 5.8. Consider a VERG G(n,X ,µ,φ) such that φ has rank r, and let
M = {λ 2

1 ,λ 2
2 , . . . ,λ 2

r } be its multiset of nonzero squared eigenvalues. Suppose that the same
random graph can also be represented as the VERG G(n,Y ,ν ,ψ), and let the finite or infinite
multiset M̃ := {λ̃ 2

1 , λ̃ 2
2 , . . .} be the multiset of nonzero squared eigenvalues for ψ . As discussed

immediately following the statement of the proposition, it suffices to show that the multisets M
and M̃ are equal.

Let ai := λ 4
i and b j := λ̃ 4

j . Applying Lemma 4.3 with k = 4,8, . . . ,4(r +1), we see that the
hypotheses of Lemma 5.9 are satisfied for K = r and for K = r +1. Therefore, M̃ has size r and
the sums (13) satisfy sk = tk for k = 1,2, . . . ,r. By Lemma 5.10, the two multisets are equal.
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[27] Bo Söderberg. Random graph models with hidden color. Acta Physica Polonica B,
34:5085–5102, 2003.
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