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ABSTRACT
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prove, for example, that f is bounded by 16.

AMS 2000 subject classifications. Primary 68W40; secondary 68P10, 60E05, 60E10.

Key words and phrases. Quicksort, density, characteristic function, sorting algorithm, Fourier
analysis, rapidly decreasing C∞ function, tempered distribution, integral equation.

Date. March 31, 2000.

1Research supported by NSF grant DMS–9803780, and by the Acheson J. Duncan Fund for the
Advancement of Research in Statistics.



           

1

1 Introduction and summary

The Quicksort algorithm of Hoare [7] is “one of the fastest, the best-known, the most
generalized, the most completely analyzed, and the most widely used algorithms for
sorting an array of numbers” [2]. Quicksort is the standard sorting procedure in Unix

systems, and Philippe Flajolet, a leader in the field of analysis of algorithms, has noted
that it is among “some of the most basic algorithms—the ones that do deserve deep
investigation” [4]. Our goal in this introductory section is to review briefly some of what
is known about the analysis of Quicksort and to summarize how this paper advances
that analysis.

The Quicksort algorithm for sorting an array of n numbers is extremely simple to
describe. If n = 0 or n = 1, there is nothing to do. If n ≥ 2, pick a number uniformly
at random from the given array. Compare the other numbers to it to partition the
remaining numbers into two subarrays. Then recursively invoke Quicksort on each of
the two subarrays.

Let Xn denote the (random) number of comparisons required (so that X0 = 0).
Then Xn satisfies the distributional recurrence relation

Xn
L
=XUn−1 +X∗n−Un + n− 1, n ≥ 1,

where
L
= denotes equality in law (i.e., in distribution), and where, on the right, Un is

distributed uniformly on the set {1, . . . , n}, X∗j
L
=Xj , and

Un; X0, . . . , Xn−1; X∗0 , . . . , X
∗
n−1

are all independent.
As is well known and quite easily established, for n ≥ 0 we have

µn := EXn = 2(n+ 1)Hn − 4n ∼ 2n lnn,

where Hn :=
∑n

k=1 k
−1 is the nth harmonic number and ∼ denotes asymptotic equiva-

lence. It is also routine to compute explicitly the standard deviation of Xn (see Exercise

6.2.2-8 in [9]), which turns out to be ∼ n
√

7− 2
3π

2.

Consider the standardized variate

Yn := (Xn − µn)/n, n ≥ 1.

Régnier [11] showed using martingale arguments that Yn → Y in distribution, with Y
satisfying the distributional identity

Y
L
=UY + (1− U)Z + g(U) =: hY,Z(U),(1.1)

where

g(u) := 2u lnu+ 2(1− u) ln(1− u) + 1,(1.2)
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and where, on the right of
L
= in (1.1), U , Y , and Z are independent, with Z

L
=Y and

U ∼ unif(0, 1). Rösler [12] showed that (1.1) characterizes the limiting law L(Y ), in the
precise sense that F := L(Y ) is the unique fixed point of the operator

G = L(V ) 7→ SG := L(UV + (1− U)V ∗ + g(U))

(in what should now be obvious notation) subject to

EV = 0, VarV <∞.

Thus it is clear that fundamental (asymptotic) probabilistic understanding of Quick-
sort’s behavior relies on fundamental understanding of the limiting distribution F . In
this regard, Rösler [12] showed that

the moment generating function (mgf) of Y is everywhere finite,(1.3)

and Hennequin [5] [6] and Rösler showed how all the moments of Y can be pumped out
one at a time, though there is no known expression for the mgf nor for the general pth
moment in terms of p. Tan and Hadjicostas [15] proved that F has a density f which is
almost everywhere positive, but their proof does not even show whether f is continuous.

The main goal of this paper is to prove that F has a density f which is infinitely
differentiable, and that each derivative f (k)(y) decays as y → ±∞ more rapidly than
any power of |y|−1: this is our main Theorem 3.1. In particular, it follows that each f (k)

is bounded (cf. Theorem 3.3).
Our main tool will be Fourier analysis. We begin in Section 2 by showing (see

Theorem 2.9) that the characteristic function φ for F has rapidly decaying derivatives
of every order. Standard arguments reviewed briefly at the outset of Section 3 then
immediately carry this result over from φ to f . Finally, in Section 4 we will use the
boundedness and continuity of f to establish an integral equation for f (Theorem 4.1).
As a corollary, f is everywhere positive (Corollary 4.2).

Remark 1.1. (a) Our method is sufficiently computational that we will prove, for
example, that f is bounded by 16. This is not sharp numerically, as Figure 4 of [15]
strongly suggests that the maximum value of f is about 2/3. However, in future work we
will rigorously justify (and discuss how to obtain bounds on the error in) the numerical
computations used to obtain that figure, and the rather crude bounds on f and its
derivatives obtained in the present paper are needed as a starting point for that more
refined work.

(b) Very little is known rigorously about f . For example, the figure discussed in (a)
indicates that f is unimodal. Can this be proved? Is f in fact strongly unimodal (i.e.,
log-concave)? What can one say about changes of signs for the derivatives of f?

(c) Knessl and Szpankowski [8] purport to prove very sharp estimates of the rates
of decay of f(y) as y → −∞ and as y →∞. Roughly put, they assert that the left tail
of f decays doubly exponentially (like the tail of an extreme-value density) and that the
right tail decays exponentially. But their results rely on several unproven assumptions
(as noted in their paper). Among these, for example, is their assumption (59) that

Ee−λY ∼ exp(αλ lnλ+ βλ+ γ lnλ+ δ) as λ→∞
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for some constants α(> 0), β, γ, δ. (Having assumed this, they derive the values of α, γ,
and δ exactly, and the value of β numerically.)

2 Bounds on the limiting Quicksort characteristic function

We will in this section prove the following result on superpolynomial decay of the char-
acteristic function of the limit variable Y .

Theorem 2.1. For every real p ≥ 0 there is a smallest constant 0 < cp <∞ such that
the characteristic function φ(t) :≡ EeitY satisfies

|φ(t)| ≤ cp|t|−p for all t ∈ R.(2.1)

These best possible constants cp satisfy c0 = 1, c1/2 ≤ 2, c3/4 ≤
√

8π, c1 ≤ 4π, c3/2 <
187, c5/2 < 103215, c7/2 < 197102280, and the relations

c1/p1
p1
≤ c1/p2

p2
, 0 < p1 ≤ p2;(2.2)

cp+1 ≤ 2p+1c1+(1/p)
p p/(p− 1), p > 1;(2.3)

cp ≤ 2p
2+6p, p > 0.(2.4)

[The numerical bounds are not sharp (except in the trivial case of c0); they are the
best that we can get without too much work, but we expect that substantial improve-
ments are possible.]

Proof. The basic approach is to use the fundamental relation (1.1). We will first show,
using a method of van der Corput [1, 10], that the characteristic function of hy,z(U) is
bounded by 2|t|−1/2 for each y, z. Mixing, this yields Theorem 2.1 for p = 1/2. Then
we will use another consequence of (1.1), namely, the functional equation

φ(t) =

∫ 1

u=0
φ(ut)φ((1− u)t) eitg(u) du, t ∈ R,(2.5)

or rather its consequence

|φ(t)| ≤
∫ 1

u=0
|φ(ut)| |φ((1− u)t)| du,(2.6)

and obtain successive improvements in the exponent p.
We give the details as a series of lemmas, beginning with a standard calculus estimate

[10]. Note that it suffices to consider t > 0 in the proofs because φ(−t) = φ(t) and thus
|φ(−t)| = |φ(t)|. Note also that the best constants satisfy cp = supt>0 t

p|φ(t)| (although
we do not know in advance of proving Theorem 2.1 that these are finite), and thus

c
1/p
p = supt>0 t|φ(t)|1/p, which clearly satisfies (2.2) because |φ(t)| ≤ 1.

Lemma 2.2. Suppose that a function h is twice continuously differentiable on an open
interval (a, b) with

h′(x) ≥ c > 0 and h′′(x) ≥ 0 for x ∈ (a, b).



            

4

Then ∣∣∣∣
∫ b

x=a
eith(x) dx

∣∣∣∣ ≤
2

ct
for all t > 0.

Proof. By considering subintervals (a+ ε, b− ε) and letting ε→ 0, we may without loss
of generality assume that h is defined and twice differentiable at the endpoints, too.
Then, using integration by parts, we calculate

∫ b

x=a
eith(x) dx =

1

it

∫ b

x=a

[
d

dx
eith(x)

]
dx

h′(x)

=
1

it




eith(x)

h′(x)

∣∣∣∣∣

b

x=a

−
∫ b

x=a
eith(x) d

(
1

h′(x)

)
 .

So
∣∣∣∣
∫ b

x=a
eith(x) dx

∣∣∣∣ ≤
1

t

{(
1

h′(b)
+

1

h′(a)

)
+

∫ b

x=a

∣∣∣∣d
(

1

h′(x)

)∣∣∣∣ dx
}

=
1

t

{(
1

h′(b)
+

1

h′(a)

)
+

∫ b

x=a

[
−d
(

1

h′(x)

)]
dx

}

=
1

t

{(
1

h′(b)
+

1

h′(a)

)
+

(
1

h′(a)
− 1

h′(b)

)}

=
2

th′(a)
≤ 2

ct
.

Lemma 2.3. For any real numbers y and z, the random variable hy,z(U) defined by
(1.1) satisfies

|Eeithy,z(U)| ≤ 2|t|−1/2.

Proof. We will apply Lemma 2.2, taking h to be hy,z. Observe that

h′′y,z(u) = 2

(
1

u
+

1

1− u

)
=

2

u(1− u)
≥ 8 for u ∈ (0, 1)

and that

h′y,z(u) = 0 if and only if u = αy,z :=
1

1 + exp
(

1
2(y − z)

) ∈ (0, 1).

Let t > 0 and γ > 0. If in Lemma 2.2 we take a := αy,z +γt−1/2 and b := 1, and assume
that a < b, then note

h′(u) = h′y,z(u) =

∫ u

x=αy,z

h′′y,z(x) dx ≥ 8(u− αy,z) ≥ 8γt−1/2 for all u ∈ (a, b).

So, by Lemma 2.2,
∣∣∣∣∣

∫ 1

u=αy,z+γt−1/2

eithy,z(u) du

∣∣∣∣∣ ≤
2

t
[8γt−1/2]−1 =

1

4γ
t−1/2.
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Trivially, ∣∣∣∣∣

∫ αy,z+γt−1/2

u=αy,z

eithy,z(u) du

∣∣∣∣∣ ≤ γt
−1/2,

so we can conclude
∣∣∣∣∣

∫ 1

u=αy,z

eithy,z(u) du

∣∣∣∣∣ ≤ [(4γ)−1 + γ]t−1/2.

This result is trivially also true when a = αy,z + γt−1/2 ≥ b = 1, so it holds for all
t, γ > 0. The optimal choice of γ here is γopt = 1/2, which yields

∣∣∣∣∣

∫ 1

u=αy,z

eithy,z(u) du

∣∣∣∣∣ ≤ t
−1/2 for all t > 0.

Similarly, for example by considering u 7→ h(1− u),

∣∣∣∣
∫ αy,z

0
eithy,z(u) du

∣∣∣∣ ≤ t−1/2 for all t > 0,

and we conclude that the lemma holds for all t > 0, and thus for all real t.

Lemma 2.4. For any real t, |φ(t)| ≤ 2|t|−1/2.

Proof. Lemma 2.3 shows that

∣∣∣E
(
eithY,Z(U)

∣∣∣ Y, Z
)∣∣∣ ≤ 2|t|−1/2

and thus
|φ(t)| =

∣∣∣EeithY,Z(U)
∣∣∣ ≤ E

∣∣∣E
(
eithY,Z(U)

∣∣∣ Y, Z
)∣∣∣ ≤ 2|t|−1/2.

The preceding lemma is the case p = 1/2 of Theorem 2.1. We now improve the
exponent.

Lemma 2.5. Let 0 < p < 1. Then

c2p ≤
[
Γ(1− p)

]2

Γ(2− 2p)
c2
p.

Proof. By (2.6) and the definition of cp,

|φ(t)| ≤
∫ 1

u=0
c2
p|ut|−p|(1− u)t|−p du = c2

p|t|−2p

∫ 1

u=0
u−p(1− u)−p du,

and the result follows by evaluating the beta integral.
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In particular, recalling Γ(1/2) =
√
π, Lemmas 2.4 and 2.5 yield

|φ(t)| ≤ 4π

|t| .(2.7)

This proves (2.1) for p = 1, with c1 ≤ 4π, and thus by (2.2) for every p ≤ 1 with
cp ≤ (4π)p; applying Lemma 2.5 again, we obtain the finiteness of cp in (2.1) for all
p < 2. Somewhat better numerical bounds are obtained for 1/2 < p < 1 by taking a
geometric average between the cases p = 1/2 and p = 1: the inequality

|φ(t)| ≤ (2t−1/2)2−2p(4πt−1)2p−1 = 22pπ2p−1t−p, t > 0,

shows that cp ≤ 22pπ2p−1, 1/2 ≤ p ≤ 1. In particular, we have c3/4 ≤
√

8π, and thus,

by Lemma 2.5, c3/2 ≤ 8π1/2
[
Γ(1/4)

]2
< 186.4 < 187.

Lemma 2.6. Let p > 1. Then

cp+1 ≤ 2p+1c1+(1/p)
p p/(p− 1).

Proof. Assume that t ≥ 2c
1/p
p . Then, again using (2.6),

|φ(t)| ≤
∫ 1

u=0
min

(
cp

(ut)p
, 1

)
min

(
cp

[(1− u)t]p
, 1

)
du

= 2

∫ c
1/p
p t−1

u=0

cp
[(1− u)t]p

du+

∫ 1−c1/pp t−1

u=c
1/p
p t−1

c2
p

[u(1− u)t2]p
du

≤ 2[
1− c1/p

p t−1
]p
c

1+(1/p)
p

tp+1
+ 2

c2
p

t2p

∫ 1/2

u=c
1/p
p t−1

du

[u(1− u)]p

≤ 2

(1/2)p
c1+(1/p)
p t−(p+1) +

2

(1/2)p
c2
p

t2p

∫ 1/2

u=c
1/p
p t−1

u−p du

≤ 2p+1

{
c1+(1/p)
p t−(p+1) +

1

p− 1
c2
pt
−2p

[
c1/p
p t−1

]−(p−1)
}

= 2p+1c1+(1/p)
p

p

p− 1
t−(p+1).

We have derived the desired bound for all t ≥ 2c
1/p
p . But also, for all 0 < t < 2c

1/p
p , we

have
2p+1c1+(1/p)

p

p

p− 1
t−(p+1) ≥ p

p− 1
≥ 1 ≥ |φ(t)|,

so the estimate holds for all t > 0.

Lemma 2.6 completes the proof of finiteness of every cp in (2.1) (by induction), and
of the estimate (2.3). The bound for c3/2 obtained above now shows (using Maple) that
c5/2 < 103215, which then gives c7/2 < 197102280.
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We can rewrite (2.3) as

c
1/(p+1)
p+1 ≤ 2c1/p

p

(
1 +

1

p− 1

)1/(p+1)
≤ 2c1/p

p exp
( 1

(p− 1)(p+ 1)

)

= 2c1/p
p exp

( 1

2(p− 1)
− 1

2(p+ 1)

)
.

Hence, by induction, if p = n+ 5
2 for a nonnegative integer n, then

c1/p
p ≤ 2nc

2/5
5/2e

(1/3)+(1/5) = C2p,

where C := 2−5/2e8/15c
2/5
5/2 < 30.6 < 25, using the above estimate of c5/2. Consequently,

c
1/p
p < 2p+5 when p = n + 5

2 . For general p > 3/2 we now use (2.2) with p1 = p and

p2 = dp − 5
2e + 5

2 , obtaining c
1/p
p < 2p2+5 < 2p+6; the case p ≤ 3/2 follows from (2.2)

and the estimate c
2/3
3/2 < 33 < 26. This completes the proof of (2.4) and hence of

Theorem 2.1.

Remark 2.7. We used (1.1) in two different ways. In the first step we conditioned on
the values of Y and Z, while in the inductive steps we conditioned on U .

Remark 2.8. A variety of other bounds are possible. For example, if we begin with
the inequality (2.7), use (2.6), and proceed just as in the proof of Lemma 2.6, we can
easily derive the following result in the case t ≥ 8π:

|φ(t)| ≤ 32π2

t2

(
ln
( t

4π

)
+ 2
)
≤ 32π2 ln t

t2
for all t ≥ 1.72.(2.8)

The result is trivial for 1.72 ≤ t < 8π, since then the bounds exceed unity.

Since Y has finite moments of all orders [recall (1.3)], the characteristic function φ
is infinitely differentiable. Theorem 2.1 implies a rapid decrease of all derivatives, too.

Theorem 2.9. For each real p ≥ 0 and integer k ≥ 0, there is a constant cp,k such that

|φ(k)(t)| ≤ cp,k|t|−p for all t ∈ R.

Proof. The case k = 0 is Theorem 2.1, and the case p = 0 follows by |φ(k)(t)| ≤ E|Y |k.
The remaining cases follows from these cases by induction on k and the following calculus
lemma.

Lemma 2.10. Suppose that g is a complex-valued function on (0,∞) and that A,B, p >
0 are such that |g(t)| ≤ At−p and |g′′(t)| ≤ B for all t > 0. Then |g′(t)| ≤ 2

√
ABt−p/2.

Proof. Fix t > 0 and let θ = arg(g′(t)). For s > t,

Re(e−iθg′(s)) ≥ Re(e−iθg′(t))− |g′(s)− g′(t)| ≥ |g′(t)| −B(s− t)
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and thus, integrating from t to t1 := t+ (|g′(t)|/B),

Re
(
e−iθ(g(t1)− g(t))

)
≥
∫ t1

t

(
|g′(t)| −B(s− t)

)
ds

= (t1 − t)|g′(t)| − 1
2B(t1 − t)2 = |g′(t)|2/(2B).

Consequently,

|g′(t)|2/(2B) ≤ |g(t)|+ |g(t1)| ≤ 2At−p,

and the result follows.

In other words, the characteristic function φ belongs to the class S of infinitely dif-
ferentiable functions that, together with all derivatives, decrease more rapidly than any
power. (This is the important class of test functions for tempered distributions, intro-
duced by Schwartz [14]; it is often called the class of rapidly decreasing C∞ functions.)

3 The limiting Quicksort density f and its derivatives

We can now improve the result by Tan and Hadjicostas [15] on existence of a density f
for Y . It is an immediate consequence of Theorem 2.1, with p = 0 and p = 2, say,
that the characteristic function φ is integrable over the real line. It is well-known—see,
e.g., [3, Theorem XV.3.3]—that this implies that Y has a bounded continuous density f
given by the Fourier inversion formula

f(x) =
1

2π

∫ ∞

t=−∞
e−itx φ(t) dt, x ∈ R.(3.1)

Moreover, using Theorem 2.1 with p = k + 2, we see that tkφ(t) is also integrable for
each integer k ≥ 0, which by a standard argument (cf. [3, Section XV.4]) shows that f
is infinitely smooth, with a kth derivative (k ≥ 0) given by

f (k)(x) =
1

2π

∫ ∞

t=−∞
(−it)k e−itx φ(t) dt, x ∈ R.(3.2)

It follows further that the derivatives are bounded, with

sup
x
|f (k)(x)| ≤ 1

2π

∫ ∞

t=−∞
|t|k |φ(t)| dt (k ≥ 0),(3.3)

and these bounds in turn can be estimated using Theorem 2.1. Moreover, as is well
known [14], [13, Theorem 7.4], an extension of this argument shows that the class S
discussed at the end of Section 2 is preserved by the Fourier transform, and thus The-
orem 2.9 implies that f ∈ S:

Theorem 3.1. The Quicksort limiting distribution has an infinitely differentiable den-
sity function f . For each real p ≥ 0 and integer k ≥ 0, there is a constant Cp,k such
that

|f (k)(x)| ≤ Cp,k|x|−p for all x ∈ R.
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For numerical bounds on f , we can use (3.3) with k = 0 and Theorem 2.1 for several
different p (in different intervals); for example, using p = 0, 1/2, 1, 3/2, 5/2, 7/2, and
taking t1 = 4, t2 = 4π2, t3 = (187/(4π))2, t4 = 103215/187, t5 = 197102280/103215,

f(x) ≤ 1

2π

∫ ∞

t=−∞
|φ(t)| dt =

1

π

∫ ∞

t=0
|φ(t)| dt

≤ 1

π

∫ ∞

t=0
min(1, 2t−1/2, 4πt−1, 187t−3/2, 103215 t−5/2, 197102280 t−7/2) dt

=
1

π

(∫ t1

t=0
dt+

∫ t2

t=t1

2t−1/2 dt+

∫ t3

t=t2

4πt−1 dt+

∫ t4

t=t3

187 t−3/2 dt

+

∫ t5

t=t4

103215 t−5/2 dt+

∫ ∞

t=t5

197102280 t−7/2 dt

)

≤ 18.2.

(3.4)

Remark 3.2. We can do somewhat better by using the first bound in (2.8) over the
interval (103.18, 1984) instead of (as above) Theorem 2.1 with p = 1, 3/2, 5/2, 7/2 over
(103.18, t3), (t3, t4), (t4, t5), (t5, 1984), respectively. This gives

f(x) < 15.3.

Similarly, (3.3) with k = 1 and the same estimates of |φ(t)| as in (3.4) yield

|f ′(x)| ≤ 1

2π

∫ ∞

t=−∞
|t||φ(t)| dt =

1

π

∫ ∞

t=0
t|φ(t)| dt < 3652.1,

which can be reduced to 2492.1 by proceeding as in Remark 3.2. The bound can be
further improved to 2465.9 by using also p = 9/2.

Somewhat better bounds are obtained by using more values of p in the estimates
of the integrals, but the improvements obtained in this way seem to be slight. We
summarize the bounds we have obtained.

Theorem 3.3. The limiting Quicksort density function f satisfies maxx f(x) < 16
and maxx |f ′(x)| < 2466.

The numerical bounds obtained here are far from sharp; examination of Figure 4
of [15] suggests that max f < 1 and max |f ′| < 2. Our present technique cannot hope to
produce a better bound on f than 4/π > 1.27, since neither Lemma 2.3 nor (2.6) can
improve on the bound |φ(t)| ≤ 1 for |t| ≤ 4. Further, no technique based on (3.3) can
hope to do better than the actual value of (2π)−1

∫∞
t=−∞|φ(t)| dt, which from cursory

examination of Figure 6 of [15] appears to be about 2.

4 An integral equation for the density f

Our estimates are readily used to justify rigorously the following functional equation.
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Theorem 4.1. The continuous limiting Quicksort density f satisfies (pointwise) the
integral equation

f(x) =

∫ 1

u=0

∫

y∈R
f(y) f

(
x− g(u)− (1− u)y

u

)
1

u
dy du, x ∈ R,

where g(·) is as in (1.2).

Proof. For each u with 0 < u < 1, the random variable

uY + (1− u)Z + g(u)(4.1)

[with notation as in (1.1)] has the density function

fu(x) :=

∫

z∈R
f(z) f

(
x− g(u)− (1− u)z

u

)
1

u
dz,(4.2)

where the integral converges for each x since, using Theorem 3.3, the integrand is
bounded by f(z)(max f)/u ≤ 16f(z)/u; dominated convergence using the continuity
of f and the same bound shows further that fu is continuous.

This argument yields the bound fu(x) ≤ 16/u, and since fu = f1−u by symmetry
in (4.1), we have fu(x) ≤ 16/max(u, 1 − u) ≤ 32. This uniform bound, (1.1), and
dominated convergence again imply that

∫ 1
0 fu(x) du is a continuous density for Y , and

thus equals f(x) for every x.

It was shown in [15] that f is positive almost everywhere; we now can improve this
by removing the qualifier “almost.”

Corollary 4.2. The continuous limiting Quicksort density function is everywhere pos-
itive.

Proof. We again use the notation (4.2) from the proof of Theorem 4.1. Fix x ∈ R and
u ∈ (0, 1). Since f is almost everywhere positive [15], the integrand in (4.2) is positive
almost everywhere. Therefore fu(x) > 0. Now we integrate over u ∈ (0, 1) to conclude
that f(x) > 0.

Alternatively, Corollary 4.2 can be derived directly from Theorem 4.1, without re-
course to [15]. Indeed, if f(y0) > 0 and u0 ∈ (0, 1), set x = y0 + g(y0); then the
integrand in the double integral for f(x) in Theorem 4.1 is postive for (u, y) equal to
(u0, y0), and therefore, by continuity, also in some small neighborhood thereof. It fol-
lows that f(y0 + g(u0)) > 0. Since u0 is arbitrary and the image of (0, 1) under g is
(−(2 ln 2− 1), 1), an open interval containing the origin, Corollary 4.2 follows readily.

Remark 4.3. In future work, we will use arguments similar to those of this paper,
together with other arguments, to show that when one applies the method of successive
substitutions to the integral equation in Theorem 4.1, the iterates enjoy exponential-
rate uniform convergence to f . This will settle an issue raised in the third paragraph of
Section 3 in [15].
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