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ABSTRACT

We establish, for various scenarios, whether or not interruptible exact stationary
sampling is possible when a finite-state Markov chain can only be viewed passively. In
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1 Introduction and summary

In recent years a large number of articles have been written about exact sampling
(also called perfect sampling) using Markov chains. See [14] for an overview. The
rough idea is as follows. One wishes to sample from the unique stationary distri-
bution π of an observed irreducible Markov chain. At each transition of the chain,
a decision is made whether to continue observing the chain or to stop. When the
observation is stopped, a value S is output and it is desired that, for all states i,
P (S = i | one ever stops observing the chain) = πi. The decision about whether to stop
at a particular time is made on the basis of the evolution of the chain up through that
time, possibly together with some additional randomness independent of the chain.

The goal of our research leading to this paper was to determine whether or not it is
possible to carry out interruptible exact sampling for finite-state chains in what Propp
and Wilson [13] call the passive setting. (We will explain in Section 3.2 what is meant
by “interruptible” and “the passive setting”.) Our central result is the following:

Interruptible exact sampling is not possible when one observes only a single trajectory.

This result remains true even if we assume that the chain is aperiodic and reversible.
[See Remark 6.2(b).] However, interruptible exact sampling is possible for an N -state
chain when one is able to observe, simultaneously, N trajectories. Here is a guide to
our specific results.

(i) (positive:) We provide an algorithm (Algorithm 4.3) which, given an irreducible
Markov chain on N states as input, produces in (random) finite time an exact
sample from the tree distribution, and hence also an exact sample from π. (The
tree distribution is defined in Section 3.1.) The algorithm is interruptible, but
requires N independent synchronized trajectories from the chain. (See Theo-
rem 4.4.)

(ii) (negative:) There is no algorithm in the passive setting for obtaining an obser-
vation from the stationary distribution of an irreducible aperiodic Markov chain
on N states which uses fewer than N independent trajectories from the chain and
which is both interruptible and exact. (See Theorem 5.1.)

(iii) (negative:) There is no algorithm in the passive setting for obtaining an observa-
tion from the common stationary distribution of any finite number of independent
irreducible aperiodic Markov chains on N states (with possibly different transition
matrices) which is both interruptible and exact. (See Theorem 6.1.) This remains
true even if we assume that all of the chains are reversible. [See Remark 6.2(a).]

2 Background

In 1992, Asmussen, Glynn, and Thorisson [3] demonstrated that exact sampling from a
Markov chain is possible under certain circumstances. They also proved that it is not
possible to obtain an exact sample from an arbitrary Markov chain without some prior
knowledge about the chain; in particular, the size of the state space must be known.
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Although their paper does provide a method for generating exact samples from an N -
state Markov chain when N is known, the paper is primarily of a theoretical nature,
and the method is complicated and inefficient.

In 1995, Lovász and Winkler [11] provided a simpler and more efficient algorithm
for obtaining an exact sample from an irreducible N -state Markov chain. Although not
mentioned explicitly in their paper, the method described in Section 3 of Lovász and
Winkler can in fact be used to obtain an exact sample from the tree distribution of
the Markov chain (as defined in Section 3.1). Aldous [1], Broder [5], and Propp and
Wilson [13] also describe algorithms for sampling from the tree distribution. Propp
and Wilson [13] discuss and compare these and other methods of sampling from the
tree distribution, and from the stationary distribution. Their discussion includes con-
sideration of such issues as whether or not the sampling is exact or interruptible. To
our knowledge, the question of whether interruptible exact sampling is possible in the
passive case (as described in Section 3.2) has not previously been considered.

3 Preliminaries

3.1 The tree distribution

Throughout this paper we consider only finite-state irreducible Markov chains. We
assume that the number of states, call it N , is known; in fact, it turns out that we may
as well assume (and so we do) that the state space is known to be [N ] := {1, . . . , N}.
We denote the transition matrix of such a chain generically by P = (pij).

An irreducible Markov chain on [N ] can be viewed equivalently as a random walk
on a connected weighted directed graph G. The vertex set of G is [N ], and there is an
edge from i to j, with weight pij , if and only if pij > 0.

For the moment, let us consider an undirected graph G with vertex set [N ]. Then a
subgraph T of G is called a spanning tree if it contains all N vertices and is connected
and acyclic. From any spanning tree, we obtain a directed spanning tree by assigning a
direction to each edge. A directed spanning tree is called an arborescence rooted at a
given vertex r if all edges are directed towards r.

We define the weight w(T ) of an arborescence T with edges {el} as w(T ) :=∏N−1
l=1 p(el), where p(el) := pij if el is directed from i to j. For the remainder of this

paper, when we refer to a “tree” T we mean an arborescence T with w(T ) > 0. The
tree distribution of the Markov chain is the probability distribution on trees obtained
by normalizing the weights w(T ) so as to sum to unity.

The Markov chain tree theorem is the well-known result (see, for example, [11] or [2])
that the stationary distribution π of the chain can be expressed simply in terms of the
tree distribution:

πi = wi/w, i ∈ [N ],

where, writing Ti for the set of trees rooted at i and T for ∪i∈[N ]Ti,

wi :=
∑

T∈Ti
w(T ), w :=

∑

i∈[N ]

wi =
∑

T∈T
w(T ).
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In particular, any algorithm for sampling from the tree distribution provides a means
of sampling from π: simply output the root of the tree.

3.2 The passive case; interruptible exact sampling

Propp and Wilson [13] distinguish between the active setting and the passive setting for
sampling using a Markov chain. In the active setting, an algorithm is assumed to have
access at all times to a transition generator, that is, to a routine which, given any input
state i, generates an observation j from the probability distribution (pij : j ∈ [N ]),
independent of all previously generated observations. In particular, a user can generate
a trajectory from P with any desired initial state. In the passive setting, the algorithm
has no control over the initial state and can only watch passively as the chain transitions
from one state to the next.

We now explain what is meant by an (on-line, Markov-chain-based) interruptible
exact sampling algorithm in the passive case; for simplicity, we will do this explicitly
only in the case that a single trajectory from the chain is available and the desired out-
put is an observation from the stationary distribution π (rather than one from the tree
distribution). Informally, an exact sampling algorithm must take as input a trajectory
from the given Markov chain; possibly using external randomization to make its deci-
sions, it watches the chain only until some finite time and then returns an observation
distributed according to π. (Important note: The state returned is not necessarily the
state of the chain at the stopping time.) More formally, we can define an exact sampling
algorithm as a collection of functions φk,i : [N ]k+1 → [0, 1] [with φk,i(x0, . . . , xk) to be
interpreted informally as the conditional probability that the algorithm stops by time k
and outputs i, given that it sees the trajectory (x0, . . . , xk) through time k] having
the following properties, where (iii) and (iv) must hold for all π, for all ρ, and for all
irreducible transition matrices P = (pij) on [N ] with stationary distribution π:

(i) ∀k ≥ 0 ∀(x0, . . . , xk) ∈ [N ]k+1 :
∑

j φk,j(x0, . . . , xk) ≤ 1;

(ii) ∀i ∈ [N ] ∀k ≥ 0 ∀(x0, x1, . . . ) ∈ [N ]∞ : φk,i(x0, . . . , xk) ↑ as k ↑;

(iii) limk↑∞
∑

j∈[N ]

∑
x0,x1,... ,xk

ρx0px0,x1 · · · pxk−1,xk φk,j(x0, x1, . . . , xk) > 0;

(iv) ∀i ∈ [N ] : limk↑∞

∑
x0,x1,... ,xk

ρx0px0,x1 ···pxk−1,xk
φk,i(x0,x1,... ,xk)∑

j∈[N ]

∑
x0,x1,... ,xk

ρx0px0,x1 ···pxk−1,xk
φk,j(x0,x1,... ,xk) = πi.

In terms of the chain X observed and the stopping time τ and output state S for
the algorithm, the properties can be interpreted informally as (i) P (τ ≤ k |X) ≤ 1;
(ii) P (τ ≤ k |X) ↑ as k ↑; (iii) P (τ < ∞) > 0; and (iv) P (S = i | τ < ∞) ≡ πi. When
the strengthening

(iii′) limk↑∞
∑

j∈[N ]

∑
x0,x1,... ,xk

ρx0px0,x1 · · · pxk−1,xk φk,j(x0, x1, . . . , xk) = 1

[interpreted as P (τ < ∞) = 1] of (iii) holds, we will call the algorithm terminating.
When (iv) can be strengthened to
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(iv′) ∀i ∈ [N ] ∀k ≥ 0:

∑

x0,x1,... ,xk

ρx0px0,x1 · · · pxk−1,xk φk,i(x0, x1, . . . , xk)

= πi ×
∑

j∈[N ]

∑

x0,x1,... ,xk

ρx0px0,x1 · · · pxk−1,xk φk,j(x0, x1, . . . , xk)

[interpreted as the independence P (τ ≤ k, S = i) ≡ P (τ ≤ k)πi of τ and S ∼ π], we say
that the algorithm is interruptible. An interruptible algorithm can be aborted without
biasing output; see the discussion in [6]. For active-case algorithms, the leading exam-
ple of a non-interruptible algorithm is coupling from the past [12], while interruptible
algorithms include cycle popping [13], Fill’s rejection-based algorithm [6] [8], and the
Randomness Recycler [7]. The results of this paper, both positive and negative, are for
interruptible algorithms.

4 A terminating algorithm for interruptible exact sam-
pling in the passive case

In this section we present a terminating algorithm for interruptible exact stationary
sampling in the passive case, assuming that one can watch N synchronized copies Xi =
(Xi(t) : t = 0, 1, . . . ), i ∈ [N ], of a Markov chain with state space [N ] and irreducible
transition matrix P. We allow arbitrary initial distribution ρ for the N -variate chain
X := (X1, . . . , XN ), but we assume that X1, . . . , XN are conditionally independent
given the initial state (X1(0), . . . , XN (0)). The algorithm will produce an observation
from the tree distribution corresponding to P (recall Section 3.1).

4.1 The algorithm in a restricted setting

In this subsection we present a terminating algorithm for interruptible exact tree-
sampling in the passive case that works under the following additional restriction on P:

Assumption A: p1j > 0 for all j ∈ [N ].

While this assumption may seem unreasonably restrictive, we will show in Section 4.2
how a simple modification of the algorithm can handle the more general case.

To describe the algorithm we first define the following events for even t ≥ 2. Informal
interpretations in words are given parenthetically following the formal definitions; see
also Figure 1.
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Figure 1: Illustration of Algorithm 4.1.

At := ∩l∈[N ]{Xl(t− 2) = 1} (Every copy of the chain is in state 1.),

Bt := {X1(t− 1) = 1} (The first copy remains in state 1 at the next step.),

Ct := {{X1(t), X2(t− 1), . . . , XN (t− 1)} = [N ]}
(The states (X1(t), X2(t− 1), . . . , XN (t− 1)) form a permutation of [N ].),

Dt(T ) := {the graph with directed edges from Xl(t− 1) to Xl(t), 2 ≤ l ≤ N ,

is the arborescence T},
Dt := ∪T∈TDt(T ),

Et(T ) := At ∩Bt ∩ Ct ∩Dt(T ),

Et := ∪T∈T Et(T ) = At ∩Bt ∩ Ct ∩Dt.

In Figure 1, Ct is realized if and only if (σ1, σ2, . . . , σN ) is a permutation of [N ];
and Dt is realized if and only if the directed edges σj → aj , j = 2, . . . , N , form an
arborescence with vertex set [N ].

Algorithm 4.1 (Terminating interruptible tree-sampling, under Assumption A).
For even t ≥ 2, let Et(T ) and Et be defined as above, and let E0 := ∅. The algorithm
is:

t← 0

repeat

t← t+ 2

until Et holds

S ← T , for the unique T ∈ T such that Et(T ) holds

return S

Theorem 4.2. When Asumption A holds, Algorithm 4.1 is a terminating algorithm for
interruptible exact tree-sampling.

Proof. Let τ denote the supremum of the values of the variable t during the operation
of Algorithm 4.1. Now fix a candidate value t of τ . Let T ∈ T be an arborescence,
say with edges el directed from il to jl, which we choose to index (in some arbitrary
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but fixed order) by l ∈ {2, . . . , N}. The event Dt(T ) is a disjoint union of (N − 1)!
subevents, with each subevent corresponding to a way of mapping the N −1 transitions
(Xl(t − 1), Xl(t)) to the N − 1 edges el. These subevents will all enter symmetrically
into the calculation below of P (τ = t, S = T ). One such subevent is

D′t(T ) := ∩Nl=2{(Xl(t− 1), Xl(t)) = (il, jl)}.

Let {i1} denote the singleton [N ] \ {i2, . . . , iN}.
Define

A′t := {τ ≥ t− 2} ∩At, even t ≥ 2.

Then, using the Markov property and independence of the trajectories,

P (τ = t, S = T )

= P ({τ ≥ t− 2} ∩ Et(T )) = P (A′t ∩Bt ∩ Ct ∩Dt(T ))

= (N − 1)!P (A′t ∩Bt ∩ Ct ∩D′t(T ))

= (N − 1)!P (A′t)P (Bt |X1(t− 2) = 1)

[
N∏

l=2

P (Xl(t− 1) = il |Xl(t− 2) = 1)

]

×P (X1(t) = i1 |Bt)
(

N∏

l=2

pil,jl

)

= (N − 1)!P (A′t) p11

[
N∏

l=2

p1,il

]
p1,i1w(T ) = (N − 1)!P (A′t) p11

(
N∏

l=1

p1l

)
w(T ).

Summing over T ∈ T we find

P (τ = t) = (N − 1)!P (A′t) p11

(
N∏

l=1

p1l

)
w

and therefore

P (τ = t, S = T ) = P (τ = t)
w(T )

w
,

which shows that Algorithm 4.1 is an interruptible exact tree-sampling algorithm.
Using the fact that X visits (1, . . . , 1) at even times infinitely often (a.s.) together
with the strong Markov property of X, it is clear that termination occurs at the first
success in an almost surely infinite sequence of Bernoulli trials with success proba-

bility p11

(∏N
l=1 p1l

)
w > 0 (note that this is where Assumption A is used). Thus

P (τ <∞) = 1, that is, Algorithm 4.1 is terminating.

4.2 The algorithm in the general setting

To avoid needing Assumption A, we can use the averaging technique of Lovász and
Winkler [11]. Let Pk be the k-step transition matrix of the chain X. Then P :=
1
N

∑N
k=1 Pk is a transition matrix with all entries positive. (Compare Problem 7(a) in

Chapter 2 of [9].) Moreover, we can effectively use the original chain to sample from
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this “averaged” chain. The resulting more general algorithm (Algorithm 4.3) obtains,
interruptibly, an exact sample T from the tree distribution of P.

To describe Algorithm 4.3, which works in the general setting described at the outset
of Section 4, for t ≥ 3N we define the following events to be used in the context of the
algorithm. (See also Figure 2.) Informally speaking, the random variables (r.v.s) Ul0
(each uniform on [N ]) provide the N trajectories an opportunity to synchronize (in
suitable fashion) their initializations at state 1; the r.v. V ensures the possibility of
a hold in state 1 for the first trajectory; and the r.v.s Ul1 (l = 2, . . . , N) are used
in generating the P-analogues of the transitions from epoch t − 2 to epoch t − 1 in
Algorithm 4.1, while U11 is used in generating the P-analogue of the X1-transition from
epoch t− 1 to epoch t in Algorithm 4.1 (recall Figure 1).

At := ∩l∈[N ]{Xl(t− 3N − 1 + Ul0) = 1},
Bt := {X1(t− 3N − 1 + U10 + V ) = 1},
Ct := {{X1(t− 3N − 1 + U10 + V + U11), X2(t− 3N − 1 + U20 + U21),

. . . , XN (t− 3N − 1 + UN0 + UN1)} = [N ]},
Dt(T ) := {the graph with directed edges from Xl(t− 3N − 1 + Ul0 + Ul1)

to Xl(t− 3N − 1 + Ul0 + Ul1 + 1), 2 ≤ l ≤ N , is the arborescence T},
Dt := ∪T∈TDt(T ),

Et(T ) := At ∩Bt ∩ Ct ∩Dt(T ),

Et := ∪T∈T Et(T ) = At ∩Bt ∩ Ct ∩Dt.
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Figure 2: Illustration of Algorithm 4.3. Here N = 3, and U10 = 1, U20 = 3, U30 = 1,
V = 2, U11 = 1, U21 = 2, U31 = 2.

In the following algorithm, successive calls to Random()are assumed to generate
independent random numbers, each uniformly distributed over [N ].

Algorithm 4.3 (Terminating interruptible stationary sampling). For t ≥ 3N ,
let Et(T ) and Et be defined as directly above, and let E0 := ∅. The algorithm is:

t← 0
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repeat

t← t+ 3N

V ← Random()

for l← 1 to N

Ul0 ← Random()

Ul1 ← Random()

until Et holds

S ← T , for the unique T ∈ T such that Et(T ) holds

return S

By modifying slightly the proof of Theorem 4.2, we obtain the following result.

Theorem 4.4. Algorithm 4.3 is a terminating algorithm for interruptible exact tree-
sampling.

Remark 4.5. Our interest in providing Algorithm 4.3 is more of a theoretical nature
(to establish the possibility of terminating interruptible exact sampling, given enough
copies of a chain) than of a practical nature (to provide an efficient algorithm). Thus we
have not fine-tuned Algorithm 4.3 to improve its performance, and we will not analyze
its running time here.

Remark 4.6. If we make no assumption regarding the independence of the trajectories,
then interruptible sampling becomes impossible for N ≥ 2 states, no matter how many
trajectories are available. Indeed, it is then possible that we are in the extreme case
that all the trajectories are identical, i.e., that there is “really” only one trajectory, in
which case Theorem 5.1 applies.

5 Impossibility of interruptible exact sampling (I)

Algorithm 4.3 requires N independent synchronized Markov chain trajectories. This
may seem excessive, especially since for interesting chains N is often enormously large.
But our next main result, Theorem 5.1, shows that this is best possible. Note that to
prove Theorem 5.1, we need only show that interruptible exact sampling is impossible
using N −1 independent trajectories. Indeed, if interruptible exact sampling is possible
with m independent trajectories, then for any m′ ≥ m it is possible with m′ independent
trajectories, since extra trajectories can always be ignored.

Theorem 5.1. There is no algorithm in the passive setting for obtaining an observation
from the stationary distribution of an irreducible aperiodic Markov chain on N states
which uses fewer than N independent trajectories from the chain and which is both
interruptible and exact.

Proof. We first establish an equation [(5.3)] that must hold if there exists an interrupt-
ible exact sampling algorithm for N -state chains (for given N ≥ 2) that uses only a
single trajectory; in that case the discussion of Section 3.2 applies verbatim. A similar
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equation, namely (5.4), must hold if interruptible exact sampling is possible using N−1
trajectories. But (5.4) will lead to a contradiction via a transition-balancing argument.

So we begin with the case of a single trajectory. Suppose that functions φk,i satisfying
(i)–(iii) and (iv′) of Section 3.2 exist. We remind the reader that (iii) and (iv′) were
required to hold for all initial distributions ρ; throughout the present proof it will suffice
to consider trajectories starting deterministically at 1. Taking ρ to be unit mass δ1 at 1
and pij to be identically 1/N , we find from (iii) that, for some 0 ≤ k <∞,

∑

j∈[N ]

∑

x1,... ,xk

φk,j(1, x1, . . . , xk) > 0 (5.1)

Let k0 be the minimum such k, and define φj(x) ≡ φj(x1, . . . , xk0) := φk0,j(1, x1, . . . , xk0)
and Xj := {x = (x1, . . . , xk0) : φj(x) > 0} for j ∈ [N ]. Again taking ρ to be δ1 and pij
to be identically 1/N , we find from (iv′) and (5.1) that Xi 6= ∅ for i ∈ [N ]. Using (iv′)
again, we find that for any transition matrix P with positive entries and stationary
distribution π,

∀i ∈ [N ] :
∑

x∈Xi
φi(x) p1,x1 · · · pxk0−1,xk0

= πi ×
∑

j∈[N ]

∑

x∈Xj
φj(x) p1,x1 · · · pxk0−1,xk0

,

(5.2)

and all terms on both sides of (5.2) are positive. Recalling the notation of Section 3.1,
it now follows in particular that

w2

∑

x∈X1

φ1(x)
∏

i,j

p
nij(x)
ij = w1

∑

x∈X2

φ2(x)
∏

i,j

p
nij(x)
ij , (5.3)

where we write nij(x) for the number of i→ j transitions in the trajectory (1, x1, . . . , xk0)
and again all terms on both sides of the equation are positive.

By the same reasoning, if there exists an interruptible exact sampling algorithm for
N -state chains that uses N − 1 independent trajectories, then there exist integer k ≥ 0
and nonempty sets X1 and X2 of (N − 1)-tuples

x = (x1(1), . . . , x1(k);x2(1), . . . , x2(k); . . . ;xN−1(1), . . . , xN−1(k))

of k-tuples from [N ] such that, for any transition matrix P with positive entries,

w2

∑

x∈X1

φ1(x)
∏

i,j

p
nij(x)
ij = w1

∑

x∈X2

φ2(x)
∏

i,j

p
nij(x)
ij , (5.4)

where, for l = 1, 2 and and every x ∈ Xl, we have φl(x) > 0, and where nij(x) is the
sum over 1 ≤ m ≤ N − 1 of the numbers of i → j transitions within the trajectories
(1, xm(1), . . . , xm(k)). To complete the proof, we will show that (5.4) cannot possibly
hold. We will make key use of the observation that, for any x ∈ X1 ∪ X2,

0 ≤ n1+(x)− n+1(x) ≤ N − 1, (5.5)
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where we have introduced the notation

n1+(x) :=
N∑

j=2

n1j(x), n+1(x) :=
N∑

i=2

ni1(x) (5.6)

for the total numbers of transitions out of and into state 1, respectively. Indeed, since
each trajectory (1, xm(1), . . . , xm(k)) starts in state 1, the number of transitions out of
state 1 within such a trajectory either equals or exceeds by one the number of transitions
into state 1.

To obtain the desired contradiction, we begin by observing that (5.4) can be written
in the form (eliminating the diagonal variables pii) that

w2f1 = w1f2 (5.7)

for all (pij > 0 : 1 ≤ i 6= j ≤ N) such that
∑

j:j 6=i pij < 1 for every i ∈ [N ], where

fl :=
∑

x∈Xl
φl(x)


 ∏

i,j:i 6=j
p
nij(x)
ij




∏

i

(
1−

∑

j:j 6=i
pij

)nii(x)


 , l = 1, 2. (5.8)

Using continuity it follows that (5.7) holds for all (pij ≥ 0 : 1 ≤ i 6= j ≤ N) such that∑
j:j 6=i pij ≤ 1 for every i ∈ [N ].
For l = 1, 2, note that fl and wl are both polynomial expressions in the variables

pij , 1 ≤ i 6= j ≤ N (we will denote this entire collection of N(N − 1) variables by p);
in fact, w1 is a polynomial expression in the (N − 1)2 variables pij with i, j ∈ [N ] and
i 6∈ {1, j} (with a similar reduction in number of variables possible for w2). Applying
Proposition A.1 (see the Appendix) to F := w2f1 − w1f2, we conclude that (5.7) holds
as an equality in the ring of polynomials in the variables p over the complex field.
Henceforth we shall write G1 ≡ G2 to indicate such an identity of polynomials G1, G2.

According to Lemma A.2 in the Appendix, the polynomial w1 (again, over the
complex field) is irreducible; likewise, so is w2. From the polynomial identity w2f1 ≡
w1f2 at (5.7) it then follows that we can write

fl ≡ wlf, l = 1, 2, (5.9)

for some polynomial f in p. Of course, the polynomial identities (5.9) remain true as
we now reduce the number of variables to three by setting p1j to α for j 6= 1, pi1 to β
for i 6= 1, and pij to γ if i 6= 1, j 6= 1, and i 6= j. Observe that now

fl(α, β, γ) ≡
∑

x∈Xl
φl(x)αn1+(x)βn+1(x)γn++(x)

×[1− (N − 1)α]n11(x)[1− β − (N − 2)γ]H(x), l = 1, 2,(5.10)

recalling (5.6) and defining

n++(x) :=
∑

i,j∈{2,... ,N}: i 6=j
nij(x), H(x) :=

N∑

i=2

nii(x). (5.11)
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Also now, by a simple generalization of the bijection argument ([10], Section 2.3.4.4,
p. 390) showing that the number of arborescences rooted at 1 is NN−2,

w1(β, γ) ≡ β[β + (N − 1)γ]N−2; (5.12)

and

w2(α, β, γ) ≡ α v2(β, γ) (5.13)

for some polynomial v2(β, γ) which is not divisible by β [the explanation for (5.13) being
that any T ∈ T2 has precisely one directed edge leaving vertex 1 and that there exists
T ∈ T2 for which 1 is a leaf. In fact, it can be shown that v2(β, γ) ≡ [β+ (N − 1)γ]N−2,
but we won’t need this.]

The idea for the remainder of the proof is to derive from the identities (5.9)–(5.10)
a polynomial identity in the single variable β, namely (5.14), and then show that (5.14)
leads to a contradiction. We will produce (5.14) by eliminating (using suitable divisi-
bility arguments) first α and then γ. These arguments are carried out in the next two
lemmas.

Lemma 5.2. Suppose that there exists an interruptible exact algorithm in the passive
setting for sampling from the stationary distribution of an irreducible aperiodic Markov
chain on N states which uses fewer than N independent trajectories from the chain.
Then there exist nonempty sets X ′1 and X ′′1 and a polynomial r such that

∑

x∈X ′′1

φ1(x)βn+1(x)−m1(β)(1− β)H(x) ≡ βN−2r(β), (5.14)

where
m1(β) = min

x∈X ′1
n+1(x).

Proof. Let ml(α) denote the highest power of α that divides fl at (5.10) and define
m̃l(α) := minx∈Xl n1+(x). We claim that ml(α) = m̃l(α), and note that this sort of
highest-power observation will be used frequently—and without accompanying proof—
in the sequel. [Indeed, ml(α) ≥ m̃l(α) is clear. To see the reverse inequality, divide fl
by αm̃l(α) and set α to 0 to obtain the expression

∑

x∈Xl:n1+(x)=m̃l(α)

φl(x)βn+1(x)γn++(x)[1− β − (N − 2)γ]H(x) =: gl(β, γ), (5.15)

which is not the zero polynomial since it has a positive value when β = 1/N = γ.]
By (5.9), (5.12), and (5.13),

m2(α) = m1(α) + 1 and (5.16)

gl ≡ vlg, l = 1, 2, (5.17)

where gl is the polynomial defined at (5.15) [recalling m̃l(α) = ml(α)], v1 := w1, v2 is
defined at (5.13), and g is obtained from f by dividing by αm1(α) and then setting α = 0.
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Define X ′l := {x ∈ Xl : n1+(x) = ml(α)} 6= ∅ for l = 1, 2. Then, similarly, the
highest power ml(β) of β dividing gl is minx∈X ′l n+1(x);

m2(β) = m1(β)− 1; (5.18)

and, with

h1(β, γ) :=
∑

x∈X ′1

φ1(x)βn+1(x)−m1(β)γn++(x)[1− β − (N − 2)γ]H(x),

we have

h1(β, γ) ≡ [β + (N − 1)γ]N−2h(β, γ) (5.19)

for some polynomial h.
The highest power m1(γ) of γ dividing h1 is minx∈X ′1 n++(x). Divide both sides

of (5.19) by γm1(γ) and set γ to 0 to find that (5.14) holds for some polynomial r, where
X ′′1 := {x ∈ X ′1 : n++(x) = m1(γ)} 6= ∅.

Lemma 5.3. The identity (5.14) cannot hold.

Proof. It follows from (5.14) that n+1(x) ≥ m1(β) + N − 2 for all x ∈ X ′′1 . But then,
for any such x and some x′ ∈ X ′2,

n+1(x) ≥ m1(β) +N − 2

= m2(β) +N − 1 by (5.18)

= n+1(x′) +N − 1

≥ n1+(x′) by the second inequality in (5.5)

= m2(α)

= m1(α) + 1 by (5.16)

= n1+(x) + 1,

contradicting the first inequality in (5.5).

6 Impossibility of interruptible exact sampling (II)

Algorithm 4.3 succeeds in using N independent synchronized Markov chain trajectories
to carry out interruptible exact sampling. But the algorithm assumes that each of
the trajectories has not only (i) the same stationary distribution, but also (ii) the
same transition matrix. In this section we show (Theorem 6.1) that interruptible exact
sampling becomes impossible when assumption (ii) is dropped, no matter how (finitely)
many trajectories are available.

Theorem 6.1. There is no interruptible algorithm in the passive setting for obtaining
an observation exactly from the common stationary distribution of any finite number of
independent irreducible aperiodic Markov chains on N states.
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Proof. Let M denote the number of trajectories available. We first prove the impos-
sibility of interruptible exact sampling when M = N = 2, then more generally when
N = 2 (regardless of M), and finally for general N .

For M = N = 2, we note that if

0 < p12, p21 < 1 and 0 < ρ < 1/max{p12, p21}, (6.1)

then

P :=

(
1− p12 p12

p21 1− p21

)
and Q :=

(
1− ρp12 ρp12

ρp21 1− ρp21

)

are irreducible aperiodic transition matrices with common stationary distribution

π =

(
p21

p21 + p12
,

p12

p21 + p12

)
.

Arguing as in the proof of Theorem 5.1, if there exists an interruptible exact sampling
algorithm in the present setting, then there exist integer k ≥ 0, nonempty sets Z1 and Z2

of pairs
z = (x,y) = (x1, . . . , xk; y1, . . . , yk)

of k-tuples from {1, 2}, and positive numbers ψl(z) (z ∈ Zl, l = 1, 2) such that, when-
ever (6.1) holds,

p12f1 = p21f2 (6.2)

where, using transition-count notation nij like that in the proof of Theorem 5.1,

fl =
∑

z∈Zl
ψl(z)p

n12(z)
12 p

n21(z)
21 ρn12(y)+n21(y)(1− p12)n11(x)(1− p21)n22(x)

×(1− ρp12)n11(y)(1− ρp21)n22(y), l = 1, 2. (6.3)

Using induction on the ρ-degree of the polynomial p12f1−p21f2 and Proposition A.1, it
is easy to show that (6.2) holds as an equality in the ring of polynomials in the variables
p12, p21, ρ over the complex field.

For l = 1, 2, let

ml = min{[n12(y) + n21(y)] : z = (x,y) ∈ Zl for some x}

denote the highest power of ρ that divides fl. Then, by (6.2), m2 = m1. Divide both
sides of (6.2) by ρm1 and then set ρ to 0 to obtain

p12g1 ≡ p21g2, (6.4)

where

gl :=
∑

z∈Z′l

ψl(z)p
n12(z)
12 p

n21(z)
21 (1− p12)n11(x)(1− p21)n22(x), l = 1, 2,
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with Z ′l := {z = (x,y) ∈ Zl : n12(y) + n21(y) = m1} 6= ∅. But [cf. (5.5) with N = 2], if
z = (x,y) ∈ Z1 ∪Z2, then n12(y) = dm1/2e and n21(y) = bm1/2c. Dividing both sides

of (6.4) by p
dm1/2e
12 p

bm1/2c
21 we obtain the polynomial identity

p12h1 ≡ p21h2, (6.5)

where

hl :=
∑

x∈Xl
φl(x)p

n12(x)
12 p

n21(x)
21 (1− p12)n11(x)(1− p21)n22(x), l = 1, 2, (6.6)

with
Xl := {x : there exists y such that (x,y) ∈ Z ′l} 6= ∅, l = 1, 2

and, for x ∈ Xl,
φl(x) :=

∑

y: (x,y)∈Z′l

ψl(x,y) > 0.

But (6.5) is the case N = 2 of (5.4), which, as shown in the proof of Theorem 5.1,
cannot hold. This contradiction establishes the theorem in the case M = N = 2.

We leave to the reader the routine extension of the above proof to the case of
arbitrary M and N = 2. A sketch is that now there are M − 1 parameters ρj , but
by using the same sort of argument for each ρj in succession that we used above for ρ,
one again obtains a contradiction of the form (6.5) [with φl(x) > 0 for all x ∈ Xl 6= ∅,
l = 1, 2].

We complete the proof of the theorem by showing that an algorithm for interruptible
exact sampling using M independent trajectories from chains with N ≥ 3 states could
be converted into one for two-state chains.

Indeed, while watching independent trajectories of M generic irreducible aperi-
odic two-state chains X1, . . . , XM with common (unknown) stationary distribution
π = (π1, π2), contemporaneously construct M independent irreducible aperiodic N -state
chains Y1, . . . , YM by letting Yi(t) = 1 whenever Xi(t) = 1 and selecting an independent
uniform random value from {2, . . . , N} as the value of Yi(t) at each time t such that
Xi(t) = 2. The stationary distribution for each Yi is (π1, π2/(N − 1), . . . , π2/(N − 1)).
Applying the size-N algorithm to Y1, . . . , YM , suppose the output state is S′. To finish
the construction of the two-state algorithm, output S := min{S′, 2}.

Remark 6.2. (a) Any two-state chain is reversible, as are the chains Yi constructed in
the preceding paragraph. Thus Theorem 6.1 remains true even if we assume that the
chains are all reversible.

(b) Similarly, as mentioned in Section 1, interruptible exact sampling from the sta-
tionary distribution is not possible when one observes only a single trajectory from an
irreducible aperiodic reversible finite-state chain.

(c) For N ≥ 3 we do not know whether Theorem 5.1 remains true if one assumes
that the chain is reversible.
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A Appendix: Polynomials

In this Appendix we establish two basic facts about polynomials; these were used in the
proof of Theorem 5.1. Throughout the Appendix, we write F ≡ G to indicate that F
and G are the same element in the ring of polynomials (in some specified finite collection
of variables) over the complex field.

The first fact is quite simple. For completeness, we include an elementary proof.

Proposition A.1. Let

x = (xij : 1 ≤ i ≤ n, 1 ≤ j ≤ ki)

be a double array of variables, where n ≥ 0 and ki ≥ 1 for 1 ≤ i ≤ n. If F (x) is a
polynomial expression that vanishes whenever xij ≥ 0 for all i, j and

∑ki
j=1 xij ≤ 1 for

all i, then F (x) ≡ 0.

Proof. Let K :=
∑n

i=1 ki. The proof is by (strong) induction on κ := K + degF , for
which (if F is not the zero polynomial) the smallest possible value is

∑
1≤i≤0 1 + 0 = 0.

The base case κ = 0 of the induction is trivial.
For the induction step we may assume n ≥ 1 and kn ≥ 1. Dividing the polynomial

F (x) by xn,kn , we can write

F (x) ≡ xn,knF1(x) + F2(x′) (A.1)

for polynomials F1 and F2, where the variables collection x′ excludes the single variable
xn,kn . Setting xn,kn to 0 in (A.1), we see that F2(x′) is a polynomial satisfying the
hypothesis of the proposition; and (in obvious notation) K2 = K − 1 and degF2 ≤
degF , so that κ2 < κ. By induction, F2(x′) ≡ 0, and so from (A.1) we now have
F (x) ≡ xn,knF1(x). But now K1 = K and degF1 = degF − 1, so that κ1 = κ− 1, and
one sees that F1(x) satisfies the hypothesis of the proposition. By induction, F1(x) ≡ 0;
we conclude that F (x) ≡ 0, as desired.

As is well known (e.g., [4], Chapter 4), for any n ≥ 1 the ring C[x1, . . . , xn] of poly-
nomials in the variables x1, . . . , xn over the complex field C is a unique factorization
domain. This means that every nonzero polynomial in C[x1, . . . , xn] can be written
uniquely (up to complex scalar multiples) as a (possibly empty) finite product of irre-
ducible polynomials. (A polynomial is said to be irreducible if it cannot be factored as
the product of two nonconstant polynomials.)

Lemma A.2. The polynomial w1 [i.e., the polynomial in the (N−1)2 variables pij with
i, j ∈ [N ] and i /∈ {1, j} defined in Section 3.1] is irreducible over the complex field.
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Proof. The proof is by induction on N . For N = 1, the polynomial w1 ≡ 1 (in no
variables) is certainly irreducible. For N = 2, the polynomial w1 ≡ p21 in the single
variable p21 is irreducible. To carry out the induction step for N ≥ 3, we will use
another induction, on l, to prove the following claim.

Claim. For 3 ≤ l ≤ N + 1, let yl denote the polynomial in (N − 1)2 − (N + 1 − l)
variables obtained from w1 by setting pm1 to 0 for l ≤ m ≤ N . Then yl is irreducible
for 4 ≤ l ≤ N + 1.

To prove the claim, we begin by noting that y3 has the factorization

y3 ≡ p21ω2, (A.2)

where the polynomial

ω2 = ω2((pij : 2 ≤ i, j ≤ N and i /∈ {2, j}))

is obtained from the polynomial w1 for the state space [N−1] by changing each variable
name from pij to pi+1,j+1. By the induction hypothesis for our N -induction, ω2 is irre-
ducible. Since p21 is clearly irreducible, we conclude that (A.2) is a prime factorization
of y3.

We now treat the base case l = 4 of our l-induction. Observe that y4 6≡ 0 (consider,
e. g., the tree N → N − 1 → · · · 2 → 1) and that y4 is linear in p31. If y4 is reducible,
then we can write

y4 ≡ (g1p31 + g2)g3, (A.3)

where gi is a polynomial free of the variable p31 (i = 1, 2, 3) and g3 is nonconstant. If we
now set p31 to 0 in (A.3), the result is y3 ≡ g2g3. From the prime factorization (A.2) we
conclude that either p21 or ω2 divides g3. But this is wrong: (i) p21 does not divide g3

because it clearly does not divide y4 (consider, e. g., the tree N → N − 1 → · · · 4 →
2→ 3→ 1), and (ii) ω2 does not divide g3 because (we claim) it, too, fails to divide y4.
(Indeed, setting pm2 to 0 for 3 ≤ m ≤ N causes ω2—but clearly not y4—to vanish.)
From this contradiction we conclude that y4 is irreducible, establishing the l-induction
base case.

For the l-induction step, let l ≥ 5. If yl is reducible, then we can write

yl ≡ (h1pl−1,1 + h2)h3, (A.4)

where hi is a polynomial free of the variable pl−1,1 (i = 1, 2, 3) and h3 is nonconstant. If
we now set pl−1,1 to 0 in (A.4), the result is yl−1 ≡ h2h3. By the l-induction hypothesis, it
must be that h3 is a nonzero complex scalar multiple of yl−1; from (A.4) we then deduce
that yl−1 divides yl. But this is wrong, because setting pm1 to 0 for 2 ≤ m ≤ l − 2
causes yl−1—but clearly not yl—to vanish. From this contradiction we conclude that yl
is irreducible, completing the l-induction.

Finally, set l to N + 1 in the claim to find that w1 ≡ yN+1 is irreducible, completing
the N -induction and the proof of the lemma.


