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Abstract. We develop a systematic matrix-analytic approach, based
on intertwinings of Markov semigroups, for proving theorems about
hitting-time distributions for finite-state Markov chains—an approach
that (sometimes) deepens understanding of the theorems by provid-
ing corresponding sample-path-by-sample-path stochastic constructions.
We employ our approach to give new proofs and constructions for two
theorems due to Mark Brown, theorems giving two quite different rep-
resentations of hitting-time distributions for finite-state Markov chains
started in stationarity. The proof, and corresponding construction, for
one of the two theorems elucidates an intriguing connection between
hitting-time distributions and the interlacing eigenvalues theorem for
bordered symmetric matrices.

1. Introduction and Outline of our General Technique

Recently, stochastic proofs and constructions have been provided for some the-
orems that give explicit descriptions of Markov chain hitting-time distributions;
previously known proofs of the theorems had been analytic in nature. Specifically,
Fill [16] and Diaconis and Miclo [10] both give stochastic constructions for a fa-
mous birth-and-death hitting-time result first proven analytically by Karlin and
McGregor [19] in 1959. Fill [15] (see also Miclo [24]) extends to upward-skip-free
and more general chains, in particular giving a (sometimes) stochastic proof for a
hitting-time theorem for upward-skip-free chains established analytically by Brown
and Shao [7].

In Sections 1.1-1.3 we describe a systematic approach, using intertwinings of
Markov semigroups, for obtaining simple stochastic decompositions of the distribu-
tions of hitting times for Markov chains and also providing sample-path-by-sample-
path constructions for the individual components in these decompositions. For
example, if one can prove a theorem that the law of a certain Markov chain hitting
time T is a convolution of Geometric distributions with certain parameters, our
additional goal is to decompose T explicitly—sample path by sample path—as a
sum of independent Geometric random variables with the specified parameters; this
deepens understanding as to “why” the theorem is true. See Fill [15] for a class
of examples using this approach. Our approach is essentially matrix-analytic, but
if certain conditions elaborated in Sections 1.1-1.2 are met, then our method also
yields a decomposition for each sample path. For the applications discussed in this
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paper, our approach provides new matrix-analytic proofs for hitting-time results
which were previously only known via analytic methods (such as computation of
Laplace transforms), and these new proofs provide new insights into the evolution
of the Markov chain. A simple example of our approach, with an application to the
Moran model in population genetics, is presented in Section 2.

We then employ our intertwinings approach to provide new proofs for two theo-
rems due to Mark Brown, providing two quite different representations of hitting-
time distributions for Markov chains started in stationarity. The proof, and sub-
sequent construction, for the first theorem (Section 3) will elucidate an interesting
connection between hitting-time distributions and the interlacing eigenvalues the-
orem for bordered symmetric matrices. Application of our approach obtains a
construction for the second theorem (Section 4) that results in a bonus: We are
able to extend Brown’s theorem from reversible chains to more general ones.

Notation: Throughout this paper, all vectors used are by default row vectors. We
write δj for the vector of 0’s except for a 1 in the jth position, and ~1 for the vector
of 1’s. The transpose of a matrix A is denoted by AT . The notation A(:, j) := AδTj
is used to denote the jth column of A, and A(i, :) := δiA to denote the ith row
of A. For any matrix A, we let A0 denote the principal submatrix of A obtained
by deleting the topmost row and leftmost column.

1.1. Intertwinings and sample-path linking. The main conceptual tool in our
approach is the notion of an intertwining of Markov semigroups, for which we now
provide the needed background in the context (sufficient for our purposes) of finite-
state Markov chains. For further background on intertwinings, see [4], [8], [26].
Suppose that we have two state spaces, the first (“primary”) of size n and the
second (“dual”) of size n̂. Let P be the transition matrix of a Markov chain X,
begun in distribution π0, on the primary state space. [We write X ∼ (π0, P ) as
shorthand.] Similarly, let P̂ be the transition matrix of a Markov chain X̂, begun
in π̂0, on the dual state space. Let Λ be an n̂-by-n stochastic matrix.

Definition 1.1. We say that the Markov semigroups (P t)t=0,1,2,... and (P̂ t)t=0,1,2,...

are intertwined by the link Λ (or, for short, that P and P̂ are intertwined by the
link Λ) if

ΛP = P̂Λ;

and we say that (π0, P ) and (π̂0, P̂ ) are intertwined by Λ if additionally

π0 = π̂0Λ.

Here are three consequences when (π0, P ) and (π̂0, P̂ ) are intertwined by Λ (with
the first two immediate—for example, ΛP 2 = P̂ΛP = P̂ 2Λ—and the third crucial
for our purposes):

• For t = 0, 1, 2, . . . , we have ΛP t = P̂ tΛ.
• For t = 0, 1, 2, . . . , the distributions πt and π̂t at time t satisfy πt = π̂tΛ.
• Given X ∼ (π0, P ), one can build X̂t from X0, . . . , Xt and randomness

independent of X so that X̂ ∼ (π̂0, P̂ ) and the conditional law of Xt given
(X̂0, . . . , X̂t) has probability mass function given by the X̂t-row of Λ:

(1.1) L(Xt | X̂0, . . . , X̂t) = Λ(X̂t, ·), t = 0, 1, 2, . . . .
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We call this last consequence sample-path linking, and will explain next, once and
for all, (a) how it is done and (b) why it is useful for hitting-time (or mixing-time)
constructions. We will then have no need to repeat this discussion when we turn to
applications, each of which will therefore culminate with the explicit construction
of an intertwining (or at least of a quasi-intertwining, as discussed in Section 1.3).

Whenever we have an intertwining of (π0, P ) and (π̂0, P̂ ), Section 2.4 of the
strong stationary duality paper [9] by Diaconis and Fill gives a family of ways to
create sample-path linking. Here is one [9, eq. (2.36)], with ∆ := P̂Λ = ΛP :

• Set X̂0 ← x̂0 with probability π̂0(x̂0)Λ(x̂0, x0)/π0(x0).
• Inductively, for t ≥ 1, set X̂t ← x̂t with probability

P̂ (x̂t−1, x̂t)Λ(x̂t, xt)/∆(x̂t−1, xt).

Suppose (π0, P ) and (π̂0, P̂ ) are intertwined and that, given X ∼ (π0, P ), we
have created linked sample paths for X̂ ∼ (π̂0, P̂ ), as at (1.1). Suppose further
that there are states, call them 0 and 0̂, such that 0 (respectively, 0̂) is the unique
absorbing state for P (resp., P̂ ) and that

(1.2) ΛδT0 = δT
0̂
,

i.e., that Λ(0̂, 0) = 1 and Λ(x̂, 0) = 0 for x̂ 6= 0̂. Then, for the bivariate process
(X̂,X), we see that absorption times agree: T0(X) = T0̂(X̂). For a parallel expla-
nation of how sample-path linking can be used to connect the mixing time for an
ergodic primary chain with a hitting time for a dual chain, consult [9]; very closely
related is the FMMR perfect sampling algorithm [14,17].

1.2. Strategy for absorption-time decompositions. The two hitting-time the-
orems discussed in Sections 3–4 both concern ergodic Markov chains. However,
since for these theorems we have no interest in the chain after the specified target
state 0 has been hit, the hitting-time distribution for such a chain is the same as
the absorption-time distribution for the corresponding chain for which the target
state is converted to absorbing by replacing the row of P corresponding to state 0
by the row vector δ0.

It should also be noted that hitting-time theorems and stochastic constructions
are easily extended to hitting times of general subsets A, by the standard trick of
collapsing A to a single state.

Here is then a general strategy for obtaining a decomposition of the time to
absorption in state 0 of a Markov chain X ∼ (π0, P ) from a decomposition of its
distribution:

1. Discover another chain X̂ ∼ (π̂0, P̂ ) for which the sample-point-wise de-
composition of the time to absorption in state 0̂ is clearly of the form
specified for X. (For example, for a pure-death chain started at d with
absorbing state 0̂ = 0, the time to absorption is clearly the sum of inde-
pendent Geometric random variables.)

2. Find a link Λ that intertwines (π0, P ) and (π̂0, P̂ ).
3. Prove the condition (1.2).
4. Conclude from the preceding discussion that (after sample-path linking)
T0(X) = T0̂(X̂) and use the sample-point-wise decomposition for T0̂(X̂)
as the decomposition for T0(X).
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An early use of our strategy (adapted for mixing times, rather than absorption
times) was in connection with the theory of strong stationary duality [9], for which
the fullest development has resulted in the case of set-valued strong stationary
duality (see especially [9, Secs. 3–4] and [14]; very closely related is the technique of
evolving sets [25]). For a very recent application to hitting times and fastest strong
stationary times for birth and death chains, see [16] and [15].

1.3. Quasi-intertwinings. Suppose that the (algebraic) intertwining conditions
ΛP = P̂Λ and π0 = π̂0Λ hold for some not necessarily stochastic matrix Λ with
rows summing to unity. We call this a quasi-intertwining of (π0, P ) and (π̂0, P̂ ) by
the quasi-link Λ. Then we again have the identities ΛP t = P̂ tΛ and πt = π̂tΛ. As
before, suppose further that (1.2) holds. Then, although (if Λ is not stochastic) we
cannot do sample-path linking and so cannot achieve T0(X) = T0̂(X̂), we can still
conclude that T0(X) and T0̂(X̂) have the same distribution, because

P(T0(X) ≤ t) = πt(0) =
∑
x̂ π̂t(x̂)Λ(x̂, 0) = π̂t(0̂) = P(T0̂(X̂) ≤ t).

Remark 1.2. The following easily-verified observations will be used in our appli-
cation in Section 3.

(a) If Λ1 is a quasi-link providing a quasi-intertwining of (π0, P ) and (π∗0 , P
∗) and

Λ2 is similarly a quasi-link from (π∗0 , P
∗) to (π̂0, P̂ ), then Λ := Λ2Λ1 is a quasi-link

from (π0, P ) to (π̂0, P̂ ).
(b) If, additionally, the chains have respective unique absorbing states 0, 0∗, 0̂

and (1.2) holds for Λ1 and for Λ2 (i.e., Λ1δ
T
0 = δT0∗ and Λ2δ

T
0∗ = δT

0̂
), then (1.2)

holds also for Λ (i.e., ΛδT0 = δT
0̂

).
(c) If Λ1 and Λ2 in (a) are both links, then so is Λ.

2. An illustrative example: Block chains and the Moran model

2.1. Block chains. In this section we warm up to the main applications of Sections
3–4 by providing a simple application of the technique outlined in Section 1. Let P
be a Markov kernel on finite state space X with the following block structure:

(2.1) P =


P00 P01 P02 . . . P0k

P10 P11 P12 . . . P1k

P20 P21 P22 . . . P2k

...
...

...
. . .

...
Pk0 Pk1 Pk2 . . . Pkk

 .

For i = 0, . . . , k, let µi be a Perron left eigenvector of Pii [that is, a nonzero row
vector with nonnegative entries such that

µiPii = ρ(Pii)µi,

where ρ(A) denotes the spectral radius of a matrix A], normalized to sum to 1.
It is well known (e.g., [18, Theorem 8.3.1]) that such an eigenvector exists; when,
additionally, Pii is irreducible, the vector µi is unique (e.g., [18, Theorem 8.4.4])
and is often called the quasi-stationary distribution for Pii. We make the following
special assumption concerning P : For every i and j, the vector µiPij is propor-
tional to µj , say µiPij = P̂ (i, j)µj . In words, the chain with transition matrix P ,
started in distribution µi over block i, moves in one step to block j with probability
P̂ (i, j); and, conditionally given that it moves to block j, it “lands” in block j with
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distribution µj . We note in passing that P̂ is a (k+ 1)-by-(k+ 1) matrix, and that
P̂ (i, i) = ρ(Pii) for every i. Define a (k + 1)-by-|X | stochastic matrix Λ by setting

(2.2) Λ :=


µ0 0 0 . . . 0
0 µ1 0 . . . 0
0 0 µ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . µk

 .

Now consider a chain X with transition matrix P and initial distribution π0;
suppose that π0 is a mixture, say

∑k
i=0 π̂0(i)µi, of the distributions µi (each of

which can be regarded naturally as a distribution on the entire state space).

Proposition 2.1. In the block-chain setting described above, (π0, P ) and (π̂0, P̂ )
are intertwined by the link Λ.

Proof. The proof is a simple matter of checking Definition 1.1 by checking that
the identity µiPij ≡ P̂ (i, j)µj gives ΛP = P̂Λ and that the assumption π0 =∑k
i=0 π̂0(i)µi gives π0 = π̂0Λ. �

The sample-path linking developed in Section 1.1 is very simple to describe in
our present block-chain setting: X̂t is simply the block (∈ {0, . . . , k}) to which Xt

belongs. This simple description is due to the very simple nature of the link (2.2);
the sample-path linking is more complicated for the applications in Sections 3–4.

2.2. The Moran model. We now apply the block-chain development in the pre-
ceding subsection to a Markov chain on partitions of the positive integer n intro-
duced in [23] as a somewhat light-hearted model for collaboration among math-
ematicians. Their model is precisely the Moran model from population genetics
according to the following definition [12, Definition 2.26] modified (a) to switch in
natural fashion from continuous time to discrete time and (b) to limit the descrip-
tion of the state at each unit of time by distinguishing between genes with different
labels but otherwise ignoring the values of the labels:

A population of N genes evolves according to the Moran model
if at exponential rate

(
N
2

)
a pair of genes is sampled uniformly at

random from the population, one dies and the other splits in two.
The chain we will consider here is a simple example of a coalescent chain, a class
popularized in the seminal works of Kingman (see for example [20], [21], [22]). For
a more complete modern picture of the application and study of coalescing chains,
see [11].

Let S be a set of n indistinguishable objects. (The objects are gene labels in
the Moran model and are mathematicians in [23].) The Markov chain of interest
in [23] is more easily described if we make use of the natural bijection between
partitions of the integer n and set partitions of S obtained by identifying a partition
(n1, n2, . . . , nr) (with 1 ≤ r < ∞ and n1 ≥ n2 ≥ · · · ≥ nr ≥ 1) of the integer n
with a partition of S into r indistinguishable subsets where the subsets are of
sizes n1, n2, . . . , nr. Accordingly, if the present state of the Markov chain is the
partition (n1, n2, . . . , nr), then, viewing this as a partition of S, uniformly select
an ordered pair of unequal objects from S, and suppose that the first and second
objects are currently in subsets of size ni and nj , respectively. The transition is
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realized by moving the second object from the second subset to the first, resulting
in two new subsets of sizes ni + 1 and nj − 1. For example, if n = 6 and the
Markov chain is currently in the partition (4, 1, 1), then with probability 8/30 the
chain transitions to (5, 1); with probability 2/30, to (4, 2); with probability 8/30, to
(3, 2, 1); and with probability 12/30 the chain stays in (4, 1, 1). The authors of [23]
are concerned with the distribution of the hitting time of state (n), the (absorbing)
single-part partition, when the chain is begun in the n-parts partition (1, . . . , 1).

Collecting partitions into blocks, where block i contains all partitions with i
parts (1 ≤ i ≤ n), it is clear that the transition matrix P for this chain is block
upper bidiagonal, since a one-step transition can only change the number of parts
by 0 or −1. For example, in the simple case n = 4, one possible ordering of the
partitions by decreasing number of parts is (1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1), (4) and
the corresponding P is given by

P =


P44 P43 0 0
0 P33 P32 0
0 0 P22 P21

0 0 0 P11

 =


0 1 0 0 0
0 6/12 2/12 4/12 0
0 0 4/12 8/12 0
0 0 3/12 6/12 3/12
0 0 0 0 1

 .

We will make use of results in [23] to see that P satisfies the assumptions of
Section 2.1. To describe the results, let 1 ≤ t ≤ n and consider a partition r of n
with t parts. For i = 1, . . . , n, let ri be the number of parts of r equal to i, so
that

∑
i iri = n. Let mr :=

(
t

r1,r2,...,rn

)
. Define µt to be the row vector, supported

on partitions of size t, whose entry corresponding to partition r is
(
n−1
t−1

)−1
mr.

For 1 ≤ t ≤ n, define λt := 1 − t(t−1)
n(n−1) . For example, if n = 4 and t = 2

and partitions with 2 parts are listed (as above) in the order (2, 2), (3, 1), then
µ2 = (1/3, 2/3) and λ2 = 5/6. Let the dual state space be ordered n, n − 1, . . . , 1
(corresponding naturally to the ordering we have used for the primary state space).
Define Λ by (2.2), but with the nonzero blocks correspondingly in decreasing order
µn, µn−1, . . . , µ1 of subscript. Let

P̂ :=


λn 1− λn 0 · · · 0
0 λn−1 1− λn−1 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ1

 .

From Theorems 2 and 4 of [23] we can use our Proposition 2.1 to derive easily the
following intertwining result.

Proposition 2.2. Let π0 be unit mass at the partition (1, . . . , 1). Then (π0, P )
and (δn, P̂ ) are intertwined by the link Λ.

As a direct consequence of Proposition 2.2, we get the following hitting-time
result.

Corollary 2.3. For fixed n, the law of the time to absorption in state (n) for the
partitions-chain started in (1, . . . , 1) is that of

∑n
t=2 Yn,t where Yn,t ∼ Geo(1−λn,t),

with λn,t = 1− t(t−1)
n(n−1) , are independent.

In [23], the authors were able to identify a simple expression for the expected
hitting time of state (n) when the chain is started in π0 = δ(1,...,1), and challenged
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the reader to discover a pattern for the associated variance. The authors found
that Eπ0 T(n) = (n− 1)2. This is confirmed by our Corollary 2.3, as

Eπ0 T(n) = E
n∑
k=2

Yn,k =
n∑
k=2

n(n− 1)
k(k − 1)

= (n− 1)2.

Similarly, letting H(2)
n :=

∑n
j=1 j

−2 denote the nth second-order harmonic number,
we find

Varπ0 T(n) = Var
n∑
k=2

Yn,k =
n∑
k=2

([
n(n− 1)
k(k − 1)

]2
− n(n− 1)
k(k − 1)

)
= 2[n(n− 1)]2H(2)

n − (n− 1)2(3n2 − 2n+ 2)

∼ (π
2

3 − 3)n4 as n→∞.
Proceeding further, it is not difficult to show that, when the partition chain is

started in π0, we have
T(n)

n2

L→S∞ :=
∞∑
j=2

Xj

for independent random variables

Xj ∼ Exp(j(j − 1)), j = 2, 3, . . . ,

with convergence of moments of all orders and (pointwise) of moment generating
functions. We omit the details.

3. Hitting times and interlacing eigenvalues

3.1. Brown’s theorem. Our next construction will provide insight into a hitting-
time result of Mark Brown [6] that elegantly connects the hitting time of a state
for a reversible Markov chain started in stationarity to the celebrated interlacing
eigenvalues theorem of linear algebra (see, e.g., Theorem 4.3.8 in [18]). We now
proceed to set up Brown’s result.

Let (Xt)t=0,1,2,... be a time-reversible ergodic discrete-time Markov chain with
transition matrix P on finite state space X = {0, 1, . . . , n} with stationary distri-
bution π. If we let D := diag(π(0), . . . , π(n)), then reversibility of P implies that
S := D1/2PD−1/2 is a symmetric matrix and thus P has a real spectrum and a basis
of real eigenvectors. Denote the eigenvalues of P by 1 = θ0 > θ1 ≥ · · · ≥ θn > −1.

Recall that, for any matrix A, the principal submatrix of A obtained by deleting
row 0 and column 0 is denoted A0. Denote the eigenvalues of P0 by η1 ≥ · · · ≥ ηn.
Note that S0 = D

1/2
0 P0D

−1/2
0 is symmetric; by the interlacing eigenvalues theorem

for bordered symmetric matrices (e.g., [18, Theorem 4.3.8]), the eigenvalues of P
and P0 interlace: θ0 > η1 ≥ θ1 ≥ · · · ≥ ηn ≥ θn. Cancel out common pairs of
eigenvalues from the spectra σ(P ) and σ(P0) as follows. Consider σ(P ) and σ(P0)
as multisets and remove the multiset σ(P ) ∩ σ(P0) from each of σ(P ) and σ(P0).
Relabel the reduced set of eigenvalues of P as {λi}ri=0 with λ0 ≥ λ1 ≥ · · · ≥ λr
and of P0 as {γi}ri=1 with γ1 ≥ · · · ≥ γr. After this cancellation, it is clear that the
remaining eigenvalues strictly interlace: 1 = λ0 > γ1 > λ1 > · · · > γr > λr > −1.

In what follows we need to assume that λr ≥ 0. This is a rather harmless
assumption, since we can if necessary shift attention from P to 1

1+c (P + cI) for
suitably large c.
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Brown found it convenient to work in continuous time, but he could just as eas-
ily have proven the analogous result in our present discrete-time setting. To state
Brown’s original continuous-time result, we make use of a very standard technique
to produce a continuous-time chain from a discrete-time chain, by using indepen-
dent and identically distributed (iid) Exp(1) holding times (in place of unit times)
between transitions. This continuous-time chain is sometimes called the continuiza-
tion of the Markov chain with one-step transition matrix P , and it has generator
matrix Q = P − I.

Brown’s original result can be stated as follows.

Theorem 3.1. Let Q = P − I be the generator of the continuization of a Markov
chain with one-step transition matrix P . In the continuized chain, the distribution
(or law) LπT0 of the hitting time of state 0 when the chain is started in stationarity,
is that of

∑r
i=1 Yi, where Y1, Y2, . . . , Yr are independent and the distribution of Yi

is the “modified Exponential” mixture

Yi ∼
1− γi
1− λi

δ0 +
(

1− 1− γi
1− λi

)
Exp(1− γi)

of unit mass at 0 and the Exponential distribution with parameter 1 − γi; the λ’s
and γ’s are defined as above.

We find it more convenient to work in discrete time, where the corresponding
theorem (involving Geometric, rather than Exponential, distributions) is as follows.

Theorem 3.2. In the discrete-time setting outlined above, LπT0 is the distribu-
tion of

∑r
i=1 Yi, where Y1, Y2, . . . , Yr are independent with the following “modified

Geometric” distributions:

(3.1) Yi ∼
1− γi
1− λi

δ0 +
(

1− 1− γi
1− λi

)
Geo(1− γi).

We have our choice of working in discrete or continuous time because, fortunately,
for any finite-state Markov chain and any target state 0 there is a simple relationship
between hitting-time distributions in the two cases. Let T d

0 be the time to hit state 0
in the discrete-time chain (Xt)t=0,1,2,... with transition matrix P , and let T c

0 be the
corresponding hitting time in the continuized chain. Then the Laplace transform
ψT c

0
(s) := E exp(−s T c

0 ) and the probability generating function GTd
0

(z) := E zT
d
0

of the hitting times satisfy a simple relationship:

Lemma 3.3. For any finite-state discrete-time Markov chain and any target state 0,
we have the following identity relating the distributions of the hitting time of state 0
for the continued chain and the discrete-time chain:

ψT c
0
(s) = GTd

0

(
1

1 + s

)
, s ≥ 0.

Proof. Let Xi ∼ Exp(1) be iid and independent of T d
0 . By definition of the con-

tinuized chain, we have T c
0
L=
∑Td

0
i=1Xi. Then

ψT c
0
(s) = E exp(−sT c

0 ) = E exp

−s Td
0∑

i=1

Xi

 = E
(

1
1 + s

)Td
0

= GTd
0

(
1

1 + s

)
.

�
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This lemma allows us to easily derive Theorem 3.1 from Theorem 3.2 (and vice
versa), since for s ≥ 0 we have

ψT c
0
(s) = GTd

0

(
1

1 + s

)
=
∏
i

[
1− γi
1− λi

+
(

1− 1− γi
1− λi

) 1−γi

1+s

1− γi

1+s

]

=
∏
i

[
1− γi
1− λi

+
(

1− 1− γi
1− λi

)
1− γi

1− γi + s

]
.

Our main result of Section 3 is another proof for Theorem 3.2, culminating in our
Theorem 3.16 (see also the last paragraph of Section 3.4). Our proof provides—at
least when the quasi-link Λ we construct is a bona fide link—an explicit stochas-
tic construction of the hitting time of state 0 from a stationary start as a sum of
independent modified Geometric random variables. We tackle our proof of Theo-
rem 3.2 in two stages: in Section 3.2 we build a certain “star chain” (random walk
on a weighted star graph) from the given chain and prove Theorem 3.2 when this
star chain is substituted for the given chain, and in Section 3.3 we attempt to “link”
the given chain with the star chain of Section 3.2. In Section 3.4 we combine the
results of Sections 3.2–3.3 and provide our complete proof of Theorem 3.2. We
could equally well prove the continuous-time analogues of all of our theorems and
then apply the analogous intertwining results outlined in Section 2.3 of [13] to pro-
vide (again when Λ is a link) an explicit continuous-time stochastic construction
for Theorem 3.1. We choose to work in discrete time for convenience and because,
we believe, the ideas behind our constructions are easier to grasp in discrete time.

3.2. A stochastic construction for the star chain. Carrying out step 1 of the
four-step strategy outlined in Section 1.2 (finding a chain X̂ for which the hitting
time of state 0̂ can be decomposed as a sum of independent modified Geometric
random variables) turns out not to be too difficult; this step is carried out later, in
Lemma 3.10. However, step 2 (finding a link Λ between the given X and X̂) proved
challenging to us, so we break it down into two substeps, as described at the end
of the preceding subsection. In this subsection we build an ergodic star chain X∗

from the given chain X and show that the Markov semigroups for X∗ (with the
target state 0∗ converted to absorbing) and X̂ are intertwined by a link Λ2. The
state spaces for X∗ and X̂ will both be {0, . . . , r}, and the roles of 0̂ and 0∗ will
both be played by state 0. For the star chain, we make full use of the notation
in Section 3.1. The “star” has “hub” at 0 and “spokes” terminating at vertices
1, . . . , r. The r-spoke star chain we build has previously been constructed in [3].

For the sake of brevity it is convenient to establish some additional notation.
Define

ρi :=
1− γi
1− λi

for i = 1, . . . , r,

and for 0 ≤ k ≤ r define

(3.2) π∗k(i) :=

{
(1− ρi)

∏
1≤j≤k, j 6=i

1−γj−ρj(1−γi)
γi−γj

for i = 1, . . . , k∏k
j=1 ρj for i = 0.

Set π∗k := (π∗k(0), . . . , π∗k(k), 0, . . . , 0) ∈ Rr+1 and note that π∗0 = δ0. The following
lemma lays out the ergodic star chain of interest corresponding to the given chain.
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Lemma 3.4.
(a) For all 0 ≤ k ≤ r we have π∗k(i) > 0 for i = 0, . . . , k and

∑k
i=0 π

∗
k(i) = 1.

(b) The row vector π∗ := π∗r is the stationary distribution of the ergodic r-spoke
star chain with transition matrix P ∗ satisfying, for i = 1, . . . , r,

P ∗(i, 0) = 1− γi and P ∗(i, i) = γi.

P ∗(0, i) =
(1− γi)π∗(i)

π∗(0)
and P ∗(0, 0) = 1− 1

π∗(0)

r∑
i=1

(1− γi)π∗(i).

Proof.
(a) Fix k ∈ {0, . . . , r}. Clearly π∗k(0) > 0, so we begin by showing that π∗k(i) > 0

for i = 1, . . . , k. Since 1 − ρi > 0, we’ll do this by showing that each factor in
the product

∏
j 6=i in (3.2) is strictly positive. Indeed, if j > i this is clear because

0 < ρj < 1. If j < i, then we use

1− γj − ρj(1− γi)
γi − γj

=
ρj(1− γi)− (1− γj)

γj − γi
>

(
1−γj

1−γi

)
(1− γi)− (1− γj)

γj − γi
= 0,

where the inequality holds because λj > γi by the interlacing condition. To show∑k
i=1 π

∗
k(i) = 1, we repeat the argument in the proof of Lemma 2.1 in [6] and

include it for completeness. Define

(3.3) ψ(s) :=
k∏
i=1

1− γi + ρis

1− γi + s
.

Then ψ(0) = 1, and we will show

ψ(s) = π∗k(0) +
k∑
i=1

π∗k(i)
1− γi

1− γi + s
for general s(3.4)

=
k∑
i=0

π∗k(i) at s = 0,

which will complete the argument. To show (3.4), first set

f(s) :=
k∏
j=1

(1− γj + ρjs), g(s) :=
k∏
j=1

(1− γj + s), f̃(s) := f(s)−

 k∏
j=1

ρj

 g(s).

Note that f̃(s) is a polynomial of degree ≤ k − 1 and that

f̃(−1 + γi) = f(−1 + γi), i = 1, . . . , k.

Define

h(s) :=
k∑
i=1

π∗k(i)(1− γi)
∏

j 6=i:1≤j≤k

(1− γj + s)

 .

A brief calculation yields

π∗k(i)(1− γi) =
f(γi − 1)
g′(γi − 1)

,

and we see that

h(γi − 1) = f(γi − 1) = f̃(γi − 1), i = 1, . . . , k.
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But h(s), like f̃(s), is a polynomial of degree ≤ k − 1, and so h(s) = f̃(s) for all s.
Finally, we see

ψ(s) =
f(s)
g(s)

=
1
g(s)

[(
k∏
i=1

ρi

)
g(s) + f̃(s)

]
=

k∏
i=1

ρi +
h(s)
g(s)

= π∗k(0) +
k∑
i=1

π∗k(i)
1− γi

1− γi + s
,

establishing (3.4) and completing the proof of part (a).

(b) Clearly, P ∗~1T = ~1T . To show that P ∗ is stochastic, we need only show
that P ∗ ≥ 0 entrywise. This is clear except perhaps for the entry P ∗(0, 0). To see
P ∗(0, 0) > 0, we first note that P ∗(0, 0) = trP ∗ − trP ∗0 ; Lemma 2.6 in [6] then
gives trP ∗ − trP ∗0 =

∑r
i=0 λi −

∑r
i=1 γi =

∑r−1
i=0 (λi − γi+1) + λr > 0. Part (a)

establishes that π∗ = π∗r is a distribution, and one sees immediately that π∗ satisfies
the detailed balance equations for the transition matrix P ∗. �

Remark 3.5. It would seem natural to define a k-spokes star chain with transition
matrix P ∗(k) and stationary distribution π∗k for general k just as is done for k = r

in Lemma 3.4. However, it is then not clear whether P ∗(k)(0, 0) ≥ 0. Moreover, in
our construction we use only the P ∗ of Lemma 3.4(b) (with k = r).

Define P ∗abs to be the chain (X∗t )t=0,1,... modified so that 0 is an absorbing state
and note that

σ(P ∗abs) = {1, γ1, . . . , γr}.
We now begin to head towards Theorem 3.11, which will show that Lπ∗(T ∗0 ) =
L(
∑r
i=1 Yi) for the Yi’s described in Theorem 3.2. To do this, we will construct a

link Λ2 between the absorbing star chain and a dual chain (X̂t)t=0,1,... for which the
hitting time for state 0 is explicitly given as an independent sum of the modified
Geometric random variables Yi.

Remark 3.6. If the given chain is already a star chain, then the star chain of
Lemma 3.4 is simply obtained by collapsing all leaves with the same one-step tran-
sition probability to state 0 into a single leaf. This is established as Proposition A.1
in the Appendix, where it is also shown that the stationary probabilities collapse
accordingly. For example, suppose the given chain is the star chain with transition
matrix

P =


4/9 1/9 1/9 1/9 1/9 1/9
1/6 5/6 0 0 0 0
1/6 0 5/6 0 0 0
2/9 0 0 7/9 0 0
1/3 0 0 0 2/3 0
1/3 0 0 0 0 2/3

 .

We see that π = 1
21 (6, 4, 4, 3, 2, 2) and that

σ(P ) = {1, 5/6, 0.8023, 0.7303, 2/3, 0.1896}, σ(P0) = {5/6, 5/6, 7/9, 2/3, 2/3}.

The reduced set of eigenvalues of P is {1, 0.8023, 0.7303, 0.1896} and the reduced
set of eigenvalues of P0 is {5/6, 7/9, 2/3}. The star chain constructed in Lemma 3.4
has three spokes with probabilities 1/6, 2/9, 1/3 of moving to the hub in one step
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and respective stationary probabilities 8/21, 3/21, 4/21 (with stationary probabil-
ity 6/21 at the hub).

The key to our construction will be the following “spoke-breaking” theorem.

Theorem 3.7. For each i = 1, . . . , r, the distribution π∗i ∈ Rr+1 can be represented
as the mixture

(3.5) π∗i = ρiπ
∗
i−1 + (1− ρi)νi

of π∗i−1 and a probability distribution νi (regarded as a row vector in Rr+1) satisfying

(3.6) νiP
∗ = γiνi + (1− γi)π∗i−1.

Proof. Fix i. Clearly there is a unique row vector ν ≡ νi satisfying (3.5), and it
sums to unity because π∗i and π∗i−1 each do. We will solve for ν and see immediately
that ν has nonnegative entries; indeed, we will show that ν is given by

(3.7) ν(j) =

{
1−γi

1−γi−ρi(1−γj)
π∗i (j) if 1 ≤ j ≤ i

0 if j = 0 or j > i.

It will then be necessary only to prove that ν satisfies (3.6).
We begin by establishing (3.7) for j = 1, . . . , i − 1. (For t = i − 1 and t = i,

the notation
∏t
k 6=j will be shorthand for the product over values k satisfying both

1 ≤ k ≤ t and k 6= j.) In that case,

(1− ρi)ν(j) = π∗i (j)− ρiπ∗i−1(j)

= (1− ρj)
i∏

k 6=j

1− γk − ρk(1− γj)
γj − γk

− ρi(1− ρj)
i−1∏
k 6=j

1− γk − ρk(1− γj)
γj − γk

= π∗i (j)
[
1− ρi

γj − γi
1− γi − ρi(1− γj)

]
= (1− ρi)

1− γi
1− γi − ρi(1− γj)

π∗i (j),

as desired, where the first equality follows from (3.5), and the second and third
employ the formula (3.2) both for π∗i and for π∗i−1.

For j = i we calculate

(1− ρi)ν(i) = π∗i (i)− ρiπ∗i−1(i) = π∗i (i),

i.e.,

ν(i) = (1− ρi)−1π∗i (i) =
1− γi

1− γi − ρi(1− γi)
π∗i (i),

again as desired.
For j = 0, (3.2) gives that

(1− ρi)ν(0) = π∗i (0)− ρiπ∗i−1(0) =
i∏

k=1

ρk − ρi
i−1∏
k=1

ρk = 0,

once again as desired. For j > i, (3.7) is clear because π∗i (j) = 0 = π∗i−1(j).
It remains to check that ν satisfies (3.6). Since both sides are vectors summing

to 1 (on the left because ν is a probability distribution and P ∗ is a transition
kernel, and on the right because both ν and π∗i−1 are probability distributions), we
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need only check LHS(j) = RHS(j) for j 6= 0 (henceforth assumed). We begin by
calculating the state-j entry of the LHS assuming j ≤ i:

LHS(j) =
r∑

k=0

ν(k)P ∗(k, j) =
i∑

k=1

ν(k)P ∗(k, j)

= ν(j)P ∗(j, j) =
[

1− γi
1− γi − ρi(1− γj)

π∗i (j)
]
× (γj).

On the other hand, using (3.5) we calculate

RHS = π∗i−1 + γi
(
ν − π∗i−1

)
= π∗i−1 + γi

[
ν − ρ−1

i (π∗i − (1− ρi)ν)
]

= ρ−1
i (π∗i − (1− ρi)ν) +

γi
ρi

(ν − π∗i ) .

Therefore, for j ≤ i the jth entry of the RHS is

RHS(j) = ρ−1
i π∗i (j)

[
1− (1− ρi)(1− γi)

1− γi − ρi(1− γj)
+

γiρi(1− γj)
1− γi − ρi(1− γj)

]
= ρ−1

i π∗i (j)
[

(1− γi)ρiγj
1− γi − ρi(1− γj)

]
= LHS(j).

If j > i, then LHS(j) = 0 = RHS(j), finishing the proof that ν satisfies (3.6). �

The preceding Theorem 3.7 suggests the form for the chain (X̂t)t=0,1,2,... on
{0, 1, . . . , r}, where the times spent in state j = 0, 1, 2, . . . , r in this chain are
independent and distributed as the Yj ’s in Theorem 3.2. Before proceeding to the
construction in Lemma 3.10, the next lemma provides some preliminaries.

Lemma 3.8. Let 0 < k ≤ r. Let π̂k(j) := ρkρk−1 . . . ρj+1(1−ρj) for all 1 ≤ j < k,
and let π̂k(k) := 1 − ρk. Then π̂k(j) ≥ 0 for 1 ≤ j ≤ k, and

∑k
j=1 π̂k(j) =

1−
∏k
i=1 ρi. If we define π̂k(0) :=

∏k
i=1 ρi, then π̂k gives a probability distribution

on 0, 1, . . . , k.

The proof of this lemma is very easy. Let us also adopt the convention π̂0 := δ0.

Remark 3.9. Paralleling (3.5) in Theorem 3.7, we have

π̂k = ρkπ̂k−1 + (1− ρk)δk for 1 ≤ k ≤ r.

We are now ready to construct (X̂t):

Lemma 3.10. Let (X̂t) be the absorbing Markov chain with state space {0, . . . , r}
begun in distribution π̂ := π̂r, with transition matrix P̂ defined by

P̂ (i, j) =


1 if 0 = j = i
γi if 0 < j = i
(1− γi) · π̂i−1(j) if j < i
0 if j > i.

Then
(a) If Zi is the time spent in state i (including time 0) by (X̂t) with initial dis-

tribution π̂ prior to hitting 0, then L(Z1, Z2, . . . , Zr) = L(Y1, Y2, . . . , Yr).
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(b) If T̂0 is the hitting time of state 0 for the chain (X̂t) with initial distribution
π̂, then T̂0

L=
∑r
i=1 Yi.

Proof. (a) When viewed in the right light, the lemma is evident. The chain moves
downward through the state space {0, 1, . . . , r}, with ultimate absorption in state 0,
and can be constructed by performing a sequence of r independent Bernoulli trials
Wr, . . . ,W1 with varying success probabilities 1 − ρr, . . . , 1 − ρ1, respectively. If
Wi = 0, then the chain does not visit state i, whereas if Wi = 1 then the amount
of time spent in state i is Geom(1− γi) independent of the amounts of time spent
in the other states.

A formal proof of part (a) is not difficult but would obscure this simple construc-
tion and is therefore not included.

(b) This is immediate from part (a), since T̂0 =
∑r
i=1 Zi. �

As the culmination of this subsection we exhibit an intertwining between (π∗, P ∗abs)
and (π̂, P̂ ).

Theorem 3.11. Let Λ2 be defined as follows:

Λ2(0, :) := δ0, Λ2(i, :) := νi for i = 1, . . . , r.

Then (π∗, P ∗abs) and (π̂, P̂ ) are intertwined by the link Λ2, which satisfies (1.2); to
wit,

Λ2P
∗
abs = P̂Λ2,(3.8)

π∗ = π̂Λ2,(3.9)

Λ2δ
T
0 = δT0 .(3.10)

Proof. We begin by noting that Λ2 is stochastic because, as noted in Theorem 3.7,
each νi is a probability distribution.

From Theorem 3.7 we have that π∗k = ρkπ
∗
k−1 + (1 − ρk)νk for 1 ≤ k ≤ r,

and from Remark 3.9 we have the corresponding equations for π̂k, namely, π̂k =
ρkπ̂k−1 +(1−ρk)δk for all 1 ≤ k ≤ r. One can use these results to prove π∗k = π̂kΛ2

for k = 0, 1, . . . , r by induction on k; in particular, (3.9) follows by setting k = r.
To show (3.8), first observe (Λ2P

∗
abs)(0, :) = δ0 = (P̂Λ2)(0, :). Comparing ith

rows for 1 ≤ i ≤ r, we see

(3.11) (Λ2P
∗
abs)(i, :) = νiP

∗
abs = γiνi + (1− γi)π∗i−1

by (3.6) and the fact that νi(0) = 0 for all i. Iterating Theorem 3.7, we see for
i = 1, . . . , r that

π∗i = (1− ρi)νi + ρiπ
∗
i−1

= (1− ρi)νi + ρi
[
(1− ρi−1)νi−1 + ρi−1π

∗
i−2

]
= (1− ρi)νi + ρi(1− ρi−1)νi−1 + ρiρi−1π

∗
i−2

= · · · = π̂i(i)νi + π̂i(i− 1)νi−1 + · · ·+ π̂i(1)ν1 + π̂i(0)δ0.

So π∗i =
∑i
j=1 π̂i(j)νj + π̂i(0)δ0 for i = 1, . . . , r, and the same equation holds for

i = 0 because π∗0 = δ0 = π̂0. Applying this to equation (3.11) we find for i = 1, . . . , r
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that

(Λ2P
∗
abs)(i, :) = γiνi +

i−1∑
j=1

(1− γi)π̂i−1(j)νj + (1− γi)π̂i−1(0)δ0

= (P̂Λ2)(i, :),

as desired, where at the last equality we have recalled Λ2(0, :) = δ0.
Finally, (3.10) asserts that the 0th column of Λ2 is δT0 . This follows from the

definition of Λ2, since it has already been noted at (3.7) that νi(0) = 0 for i =
1, . . . , r. �

3.3. Quasi-link to the star chain. The main result of this subsection is The-
orem 3.13, which provides a quasi-link between the absorbing transition matrices
Pabs and P ∗abs corresponding to the given chain and the star chain, respectively. We
begin with a linear-algebraic lemma.

Lemma 3.12. The matrix Pabs has n + 1 linearly independent left eigenvectors.
Its multiset of n+ 1 eigenvalues is {1, η1, . . . , ηn}.

Proof. Recall that σ(P0) = {η1, . . . , ηn}. Recall also that D0 = diag(π1, . . . , πn)
and that S0 = D

1/2
0 P0D

−1/2
0 is a symmetric matrix. Let Ũ be an n-by-n orthogo-

nal matrix whose rows are orthonormal left eigenvectors of S0, so that ŨS0Ũ
T =

diag(η1, η2, . . . , ηn). Then the rows (denoted u1, . . . , un) of the n-by-n matrix
U := ŨD

1/2
0 are left eigenvectors of P0 with respective eigenvalues η1, . . . , ηn. For

i = 1, . . . , n, define the scalar

wi :=
(0|ui)P (:, 0)

ηi − 1
;

then (wi|ui)Pabs = ηi(wi|ui) and ηi ∈ σ(Pabs). Finally, δ0Pabs = δ0. The n + 1
eigenvectors δ0 and (wi|ui) for i = 1, . . . , n are clearly linearly independent, and
our proof is complete. �

Note that
(wi|ui)~1T = (wi|ui)Pabs

~1T = ηi(wi|ui)~1T

and ηi < 1, implying that (wi|ui)~1T = 0 and wi = −ui~1T .
Let ni denote the algebraic (also geometric) multiplicity of the eigenvalue γi

as an eigenvalue of P0 (here we are working with the reduced set of eigenvalues
again). Relabel the eigenvectors corresponding to γi by ui1, . . . , u

i
ni

. Note that,
when viewed as an eigenvalue of Pabs, γi has algebraic (also geometric) multiplicity
ni, with corresponding eigenvectors (−ui1~1T |ui1), . . . , (−uini

~1T |uini
). In the next

theorem we construct our (r + 1)-by-(n + 1) quasi-link Λ1 between (π, Pabs) and
(π∗, P ∗abs).

Theorem 3.13. There exists a quasi-link Λ1 providing a quasi-intertwining between
(π, Pabs) and (π∗, P ∗abs) and satisfying (1.2), i.e., a matrix Λ1 with rows summing
to 1 such that

π = π∗Λ1,(3.12)

Λ1Pabs = P ∗absΛ1,(3.13)

Λ1δ
T
0 = δT0 .(3.14)
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Proof. If row i of Λ1 is denoted by xi for i = 0, ..., r, then for (3.13) we require

x0Pabs = x0; xiPabs = (1− γi)x0 + γixi i = 1, . . . , r.

This forces x0 = δ0 and

xi(Pabs − γiI) = (1− γi)δ0, i = 1, . . . , r.

Therefore, for Λ1Pabs = P ∗absΛ1 to hold, we necessarily set

xi = δ0 +
ni∑
j=1

cij (−uij~1T |uij), i = 1 . . . , r

where the cij ’s are soon-to-be-determined real constants.
For any choices of cij ’s above we have that the rows of Λ1 sum to unity and

Λ1Pabs = P ∗absΛ1, but it remains to be shown that we can define cij ’s so that (3.12)
holds. The difficulty is that there may exist values ηi ∈ σ(P0) such that ηi 6= γj
for any j = 1, . . . , r. However, we will show in the next lemma that π is in the
span of the eigenvectors corresponding to the remaining eigenvalues, and that will
complete our proof of (3.12).

To prove (3.14), we use (3.12)–(3.13) to get πP tabs = π∗Λ1P
t
abs = π∗P ∗tabsΛ1; we

find [using Λ1(0, 0) = 1] that the 0th entry of this vector is

Pπ(T0 ≤ t) =
∑
i

π∗(i)
∑
j

P ∗tabs(i, j)Λ1(j, 0)

= π∗(0) +
∑
i 6=0

π∗(i)[P ∗tabs(i, 0) + P ∗tabs(i, i)Λ1(i, 0)]

= π∗(0) +
∑
i 6=0

π∗(i)[1 + P ∗tabs(i, i)(Λ1(i, 0)− 1)]

= π∗(0) +
∑
i 6=0

π∗(i)[1 + γti (Λ1(i, 0)− 1)]

= 1 +
r∑
i=1

π∗(i)γti (Λ1(i, 0)− 1).

We also have from (3.15) in the proof of the next lemma that Pπ(T0 ≤ t) =
1−

∑r
i=1 π

∗(i)γti . Therefore Λ1(i, 0) = 0 for i > 0, and (3.14) follows. �

Lemma 3.14. There exist real constants cij such that π = π∗Λ1.

Proof. We will make use of the fact that

(3.15) Pπ(T0 > t) =
r∑
j=1

π∗(j)γtj , t = 0, 1, . . . ,

which follows from its continuous-time analogue, equation (1.1) in [6], using Lemma 3.3.
[That analogue is established using the fact that the function ψ in our equations
(3.3)–(3.4) is the Laplace transform of T0 for the stationary continuized chain;
see [6] for further details.] Define

π−0 := (π(1), . . . , π(n)) ∈ Rn;

we would use the notation π0 to indicate this deletion of the 0th entry from π except
that it conflicts with our notation for the initial distribution of the given chain. We
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then have that Pπ(T0 > t) = π−0P
t
0
~1T . Using the spectral representation of P0 we

find for t ≥ 0 that

(3.16) Pπ(T0 > t) =
n∑
i=1

n∑
j=1

n∑
k=1

√
π(i)π(j)Ũ(k, i)Ũ(k, j)ηtk =

n∑
k=1

qkη
t
k.

Here q = (q1, . . . , qn) = (π1/2
−0 Ũ

T )2, where both the nonnegative square root and
the square are in the Hadamard sense. In particular, qk ≥ 0 for all k = 1, . . . , n.
Comparing (3.15) and (3.16), it is clear that if ηi 6= γj for every j = 1, . . . , r,
then qi = 0. Again comparing (3.15) and (3.16), for each γj there is an ηk = γj
such that the coefficient of ηtk in (3.16), namely qk, is strictly positive. Now q =
(π1/2
−0 Ũ

T )2 equals the Hadamard square (π−0D
−1/2
0 ŨT )2. We can therefore choose

R, a diagonal matrix with ±1 along the diagonal, such that π−0 = q1/2R(ŨD1/2
0 ) =

q1/2RU ; here q1/2 is the Hadamard nonnegative square root of q. Relabel the
entries of the vector q (and of R) so that

π−0 =
r∑
i=1

ni∑
j=1

rij(q
i
j)

1/2uij .

Letting cij = rij(q
i
j)

1/2/π∗(i) yields

π−0 =
r∑
i=1

ni∑
j=1

π∗(i) cij u
i
j .

It remains only to show that for this choice of cij ’s we have

π(0) = 1 +
r∑
i=1

ni∑
j=1

π∗(i)cij(−uij~1T ).

This is immediate from

1− π(0) = π−0
~1T = q1/2RU~1T =

r∑
i=1

ni∑
j=1

rij(q
i
j)

1/2(uij ~1
T ). �

Our construction of Λ1 uses the eigenvectors of Pabs; the entries of these eigen-
vectors are not all nonnegative, and as a result neither (in general) are the entries
of Λ1. In the special case that the given chain is a star chain, the quasi-link Λ1 is a
bona fide link. For example, for the chain considered in Remark 3.6 the quasi-link
Λ1 is easily seen to be the link

Λ1 =


1 0 0 0 0 0
0 1/2 1/2 0 0 0
0 0 0 1 0 0
0 0 0 0 1/2 1/2

 .

Remark 3.15. If r = n (i.e., the reduced spectra are the same as the unreduced
spectra), then it is not hard to show that the quasi-link Λ1 of Theorem 3.13 is
uniquely determined.
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3.4. The big link Λ. Combining the quasi-link Λ1 of Theorem 3.13 between
(π, Pabs) and (π∗, P ∗abs) and the link Λ2 of Theorem 3.11 between (π∗, P ∗abs) and
(π̂, P̂ ), we obtain the desired quasi-link Λ = Λ2Λ1 between (π, Pabs) and (π̂, P̂ ).

Theorem 3.16. Let Λ := Λ2Λ1. Then Λ is a quasi-link providing a quasi-inter-
twining of (π, Pabs) and (π̂, P̂ ), and therefore LπT0 = Lπ̂T̂0.

Proof. This follows from Remark 1.2 and the discussion in Section 1.3. �

If Λ is stochastic, then we have a link between Pabs and P̂ and we can use
the discussion following Definition 1.1 to construct a sample path of (X̂t) given
a realization of (Xt). However, it’s easy to find examples showing that Λ is not
nonnegative in general.

The discussion preceding Remark 3.15 shows that Λ is a link if the given chain X
is a star chain. More generally, Λ is a link if the given chain is a “block star
chain”, defined as follows: Choose positive numbers b0, . . . , bk summing to unity
and 0 < π0 ≤ 1. For i = 1, . . . , k, let ci := π0bi and let Qi be an ergodic and
reversible Markov kernel with stationary probability mass function πi. Let P be
the following special case of (2.1):

P =


b0 b1π1 b2π2 . . . bkπk
c1~1T (1− c1)Q1 0 . . . 0
c2~1T 0 (1− c2)Q2 . . . 0

...
...

...
. . .

...
ck~1T 0 0 . . . (1− ck)Qk

 ;

it is easily checked that P is ergodic and reversible with stationary distribution equal
to the concatenated row vector (π0 + k)−1(π0|π1| · · · |πk), and that the reduction
of spectra described in Section 3.1 results in {γ1, . . . , γr} being some subset of
distinct elements from {1 − c1, . . . , 1 − ck}. If, for example, r = k, then Λ1 is the
matrix (2.2), where µ0 = (1) is 1-by-1 and we recall for 1 ≤ j ≤ k that µj (= πj) is
the quasi-stationary distribution for the jth diagonal block (1− cj)Qj of P ; hence
Λ1 is a link (and so, then, is Λ = Λ1Λ2). We are not aware of other interesting
cases where Λ is guaranteed to be a link, but the key is to arrange, as for block
star chains, for P0 to have nonnegative eigenvectors corresponding to eigenvalues
γ1 . . . , γr.

Remark 3.17. Is there a unique quasi-link Λ which, like the one constructed in
Theorem 3.16, satisfies ΛδT0 = δT0 and provides a quasi-intertwining of (π, Pabs) and
(π̂, P̂ )? We do not know the answer in general, but if r = n, then the answer is
affirmative by Remark 3.15 and the invertibility of Λ2.

4. Another representation for hitting times from stationarity

Our final application of the strategy outlined in Section 1.2 will provide a sto-
chastic construction for an alternative characterization of the hitting-time distribu-
tion from stationarity first proved by Mark Brown [personal communication] in an
unpublished technical report. A published version of a special case can be found
in [5]. Our construction here is notable in that it will provide a generalization (to
not necessarily reversible chains) of the discrete-time analogue of Brown’s original
result, and it is by applying our strategy that we discovered the generalization.

Brown’s original theorem is the following, in which 0 is an arbitrary fixed state.
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Theorem 4.1 (Mark Brown). Consider an ergodic time-reversible finite-state con-
tinuous-time Markov chain with stationary distribution π. Let V be a random
variable with

P(V > t) =
P00(t)− π(0)

1− π(0)
, 0 ≤ t <∞.

Let V1, V2, . . . be iid copies of V , and let N be independent of the sequence (Vi) with
N + 1 distributed Geometric with success probability π(0):

P(N = k) = π(0)[1− π(0)]k, k = 0, 1, . . . .

Then the distribution LπT0 of the nonnegative hitting time T0 of 0 from a stationary
start is the distribution of

∑N
i=1 Vi.

We will focus on the following discrete-time analogue. As in Section 3, analogues
of all of our results can be established in the continuous-time setting as well, but
we have chosen discrete time for convenience and ease of understanding.

Theorem 4.2. Consider an ergodic time-reversible finite-state discrete-time Markov
chain with stationary distribution π. Assume that P t(0, 0) is nonincreasing in t.
Let V be a random variable with

P(V > t) =
P t(0, 0)− π(0)

1− π(0)
, t = 0, 1, . . . .

Let V1, V2, . . . be iid copies of V , and let N be independent of the sequence (Vi) with
N + 1 distributed Geometric with success probability π(0):

P(N = k) = π(0)[1− π(0)]k, k = 0, 1, . . . .

Then the distribution LπT0 of the nonnegative hitting time T0 of 0 from a stationary
start is the distribution of

∑N
i=1 Vi.

The assumption in Theorem 4.2 that P t(0, 0) is nonincreasing in t is met, for
example, if the chain is time-reversible and all the eigenvalues of the one-step tran-
sition matrix P are nonnegative. However, we do not need to assume re-
versibility to follow our approach, so Theorem 4.2 (and likewise Theorem 4.1)
is true without that assumption. For a non-reversible scenario in which the nonin-
creasingness assumption is satisfied, see Remark 4.7 and the paragraph preceding it.

Following our strategy, we aim to provide a sample-path intertwining of the
given chain X in Theorem 4.2 with a chain X̂ (with, say, initial distribution π̂0

and transition matrix P̂ ) for which the hitting time T̂0 has (for each sample path)
a clear decomposition

∑N
i=1 Vi as in the theorem. As in our earlier application,

we can treat 0 as an absorbing state for the given chain, whose one-step transition
matrix we then denote by Pabs. We thus wish to find (π̂0, P̂ ) and a link (or at
least quasi-link) Λ such that π = π̂0Λ and ΛPabs = P̂Λ. The chain X̂ we will
construct has state space {0, 1, . . . }. Although the state space is infinite, this gives
no difficulties as the needed intertwining results from [9] apply just as readily to
Markov chains with countably infinite state spaces. First we construct our Λ.

Suppose the given chain has state space {0, 1, . . . , n}. We adopt notation that
highlights the special role of state 0. Let π = (π(0)|π−0) ∈ Rn+1 with π−0 ∈ Rn,
and similarly let P i−1(0, :) = (P i−1(0, 0) |P i−1(0, :)−0) ∈ Rn+1. For i = 1, 2, 3, . . .,
define

µi :=
(

0
∣∣∣∣P i−1(0, 0)π−0 − π(0)P i−1(0, :)−0

P i−1(0, 0)− π(0)

)
∈ Rn+1.
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Lemma 4.3. With µi defined above, we have for i > 0 that

µiP = qiπ + (1− qi)µi+1,

where

qi :=
P i−1(0, 0)− P i(0, 0)
P i−1(0, 0)− π(0)

∈ [0, 1).

Proof. First note

µiP =
P i−1(0, 0)(0|π−0)P − π(0)(0|P i−1(0, :)−0)P

P i−1(0, 0)− π(0)
.

Now (0|π−0)P = π − π(0)P (0, :), and similarly

(0|P i−1(0, :)−0)P = P i−1(0, :)P − P i−1(0, 0)P (0, :)

= P i(0, :)− P i−1(0, 0)P (0, :);

hence

P i−1(0, 0)(0|π−0)P − π(0)(0|P i−1(0, :)−0)P

= P i−1(0, 0)π − π(0)P i(0, :)

= P i−1(0, 0)π − (P i(0, 0)π(0)|0)− (0|π(0)P i(0, :)−0)

= P i−1(0, 0)π − P i(0, 0)π + P i(0, 0)(0|π−0)− (0|π(0)P i(0, :)−0)

= [P i−1(0, 0)− P i(0, 0)]π + (0|P i(0, 0)π−0 − π(0)P i(0, :)−0).

Letting

qi :=
P i−1(0, 0)− P i(0, 0)
P i−1(0, 0)− π(0)

,

it follows that µiP = qiπ + (1− qi)µi+1, as desired. �

This lemma suggests the form for P̂ and Λ. Let X̂ have state space {0, 1, 2, . . .}.
Define the transition kernel P̂ by setting P̂ (0, 0) := 1 and, for i > 0,

P̂ (i, 0) := π(0)qi, P̂ (i, 1) := [1− π(0)]qi, P̂ (i, i+ 1) := 1− qi;

we set P̂ (i, j) := 0 for all other pairs (i, j). As the following lemma shows, the hit-
ting time T̂0 for this chain X̂ has a simple decomposition as a sum of Geometrically
many iid copies of V .

Lemma 4.4. Let X̂ have initial distribution π̂0 := π(0)δ0+[1−π(0)]δ1 and one-step
transition matrix P̂ . Then there exist random variables N and V1, V2, . . . with joint
distribution as in Theorem 4.2 such that (for every sample path) T̂0 =

∑N
i=1 Vi.

Proof. Let N ≥ 0 denote the number of visits to state 1; and for i = 1, . . . , N , let
Vi denote the highest state reached in the time interval [τi, τi+1), where τi denotes
the epoch of ith visit to state 1. Then all of the assertions of the lemma are clear;
it is perhaps worth noting only that for t = 0, 1, . . . we have

P(V1 > t) =
t∏
i=1

(1− qi) =
P t(0, 0)− π(0)

1− π(0)
. �

Define Λ by setting Λ(0, :) := δ0 and Λ(i, :) := µi for i > 0. Note that Λ has
infinitely many rows, each of which is in Rn+1. We then have the following theorem
whose proof is almost immediate from the definitions and Lemma 4.3.
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Theorem 4.5. The quasi-link Λ provides a quasi-intertwining of (π, Pabs) and
(π̂0, P̂ ) and satisfies (1.2), and therefore LπT0 = Lπ̂0 T̂0.

Proof. It is easily checked that each row of Λ sums to unity. Further, for i > 0
using the observations that µi(0) ≡ 0 and µ1 =

(
0
∣∣∣ π−0
1−π(0)

)
, one finds readily that

the ith row of ΛPabs is µiP = qiπ + (1− qi)µi+1, which is the ith row of P̂Λ. The
0th rows are both δ0, so we conclude ΛPabs = P̂Λ. Similarly, π = π̂0Λ. Finally,
since µ0(0) = 1 and µi(0) = 0 for i > 0, we have ΛδT0 = δT0 , which is (1.2). The
equality of hitting-time laws then follows from the discussion in Section 1.3. �

Note that Λ is a link (in which case sample-path linking is possible) if and
only if for every t ≥ 0 the t-step transition probability P̃ t(i, 0) is maximized when
i = 0; here P̃ is the time-reversed transition matrix P̃ (i, j) := π(j)P (j, i)/π(i). A
sufficient condition for this is that the state space is partially ordered, 0 is either a
top element or a bottom element, and P̃ is stochastically monotone.

Remark 4.6. The intertwining constructed in Lemma 4.3 and Theorem 4.5 can
be related to the fastest strong stationary time construction of [2] and the corre-
sponding strong stationary dual constructed in Example 2.6 of [9]. In the interest
of brevity, we omit an explanation of the connection.

Remark 4.7. We claim that if P is such that P̃ t(i, 0) is maximized for every t when
i = 0, then P automatically satisfies the assumption in Theorem 4.2 that P t(0, 0)
is nonincreasing in t. To see this, consider the chain X with transition matrix P
started in distribution µ1 = [1− π(0)]−1[π − π(0)δ0]. Then, for any state i,

P(Xt = i)
π(i)

=
π(i)− π(0)P t(0, i)
π(i)[1− π(0)]

=
1− P̃ t(i, 0)

1− π(0)
.

If s(t) is the separation of the chain at time t, then 1 − s(t) equals the minimum
of this ratio over i, namely, [1 − P t(0, 0)]/[1 − π(0)]. It is well known (e.g., [1,
Chapter 9]) that separation is nonincreasing in t, so P t(0, 0) is nonincreasing.

Acknowledgment. We thank Mark Brown for stimulating discussions and the
anonymous referee for helpful comments.
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Appendix A. P ∗ when P is a star chain

In Remark 3.6 it is claimed that if the given chain P is a star chain, then the star
chain of Lemma 3.4 is simply obtained by collapsing all leaves with the same one-
step transition probability to state 0 into a single leaf. More precisely, we establish
the following:

Proposition A.1. Let P be the transition matrix of an ergodic star chain with hub
at 0. If for each γi in the reduced set of eigenvalues of P0 we define

m(i) := {j ∈ [n] : ηj = γi},

then P ∗(0, i) =
∑
j∈m(i) P (0, j).
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Proof. Define H := diag(η1, . . . , ηn) and

x := (P (0, 1), . . . , P (0, n)),

y := (1− η1, . . . , 1− ηn),

so that

P =
(
P (0, 0) x
yT H

)
.

By the standard formula for the determinant of a partitioned matrix (e.g., [18,
Section 0.8.5]), if t is not in the spectrum {η1, . . . , ηn} of H then we find

(A.1) det(tI − P ) = [t− P (0, 0)− x(tI −H)−1yT ] det(tI −H)

for the characteristic polynomial of P . Analogously, define Γ := diag(γ1, . . . , γr)
and

x∗ := (P ∗(0, 1), . . . , P ∗(0, r)),

y∗ := (1− γ1, . . . , 1− γr);

if t is not in the spectrum {γ1, . . . , γr} of Γ, then we find

(A.2) det(tI − P ∗) = [t− P ∗(0, 0)− x∗(tI − Γ)−1y∗T ] det(tI − Γ)

for the characteristic polynomial of P ∗.
Note that

P (0, 0) = trP − trH =
n∑
i=0

θi −
n∑
i=1

ηi

=
r∑
i=0

λi −
r∑
i=1

γi = trP ∗ − tr Γ = P ∗(0, 0),(A.3)

where the third equality is a result of the eigenvalue reduction procedure discussed
in Section 3.1 and the fourth equality is from Lemma 2.6 in [6]. Similarly, for all
t /∈ {η1, . . . , ηn} we have

(A.4)
det(tI − P )
det(tI −H)

=
det(tI − P ∗)
det(tI − Γ)

.

Therefore, for all t /∈ {η1, . . . , ηn} we have

(A.5)
n∑
i=1

P (0, i)
1− ηi
t− ηi

=
r∑
i=1

P ∗(0, i)
1− γi
t− γi

,

because using definitions of H,x, y,Γ, x∗, y∗ and equations (A.1)–(A.4) we find
n∑
i=1

P (0, i)
1− ηi
t− ηi

= x(tI −H)−1yT = t− P (0, 0)− det(tI − P )
det(tI −H)

= t− P ∗(0, 0)− det(tI − P ∗)
det(tI − Γ)

= x∗(tI − Γ)−1y∗T =
r∑
i=1

P ∗(0, i)
1− γi
t− γi

.

Rewrite (A.5) as

r∑
i=1

P ∗(0, i)
1− γi
t− γi

=
r∑
i=1

 ∑
j∈m(i)

P (0, j)

 1− γi
t− γi

.
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Since γ1, . . . , γr are distinct, it follow easily that P ∗(0, i) =
∑
j∈m(i) P (0, j) for

i = 1, . . . , r, as desired. �

Let π be the stationary distribution for P . Using the formula for P ∗(0, i) pro-
vided by Proposition A.1, it is a simple matter to check that the probability mass
function π∗ defined by π∗(0) := π(0) and π∗(i) =

∑
j∈m(i) π(j) for i 6= 0 satisfies

the detailed balance condition and is therefore the stationary distribution for P ∗;
indeed, using the reversibility of P with respect to π we have

π∗(0)P ∗(0, i) = π(0)
∑

j∈m(i)

P (0, j) =
∑

j∈m(i)

π(j)P (j, 0)

=
∑

j∈m(i)

π(j)(1− γi) = π∗(i)P ∗(i, 0).
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