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Abstract

By developing and applying a broad framework for rejection sampling using
auxiliary randomness, we provide an extension of the perfect sampling algorithm of
Fill (1998) to general chains on quite general state spaces, and describe how use of
bounding processes can ease computational burden. Along the way, we unearth
a simple connection between the Coupling From The Past (CFTP) algorithm
originated by Propp and Wilson (1996) and our extension of Fill’s algorithm.
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1 Introduction

Markov chain Monte Carlo (MCMC) methods have become extremely popu-
lar for Bayesian inference problems (see e.g. Gelfand and Smith [16], Smith and
Roberts [41], Tierney [43], Gilks et al. [17]), and for problems in other areas, such
as spatial statistics, statistical physics, and computer science (see e.g. Fill [11] or
Propp and Wilson [37] for pointers to the literature) as a way of sampling ap-
proximately from a complicated unknown probability distribution π. An MCMC
algorithm constructs a Markov chain with one-step transition kernel K and sta-
tionary distribution π; if the chain is run long enough, then under reasonably
weak conditions (cf. Tierney [43]) it will converge in distribution to π, facilitating
approximate sampling.

One difficulty with these methods is that it is difficult to assess convergence to
stationarity. This necessitates the use of difficult theoretical analysis (e.g., Meyn
and Tweedie [32], Rosenthal [40]) or problematic convergence diagnostics (Cowles
and Carlin [5], Brooks, et al. [2]) to draw reliable samples and do proper inference.

An interesting alternative algorithm, called coupling from the past (CFTP),
was introduced by Propp and Wilson [37] (see also [38] and [39]) and has been
studied and used by a number of authors (including Kendall [26], Møller [33], Mur-
doch and Green [35], Foss and Tweedie [15], Kendall and Thönnes [28], Corcoran
and Tweedie [4], Kendall and Møller [27], Green and Murdoch [18], and Murdoch
and Rosenthal [36]). By searching backwards in time until paths from all starting
states have coalesced, this algorithm uses the Markov kernel K to sample exactly
from π.

Another method of perfect simulation, for finite-state stochastically monotone
chains, was proposed by Fill [11]. Fill’s algorithm is a form of rejection sampling.
This algorithm was later extended by Møller and Schladitz [34] and Thönnes [42]
to non-finite chains, motivated by applications to spatial point processes. Fill’s
algorithm has the advantage over CFTP of removing the correlation between the
length of the run and the returned value, which eliminates bias introduced by an
impatient user or a system crash and so is “interruptible”. However, it has been
used only for stochastically monotone chains, making heavy use of the ordering of
state space elements. In his paper, Fill [11] indicated that his algorithm could be
suitably modified to allow for the treatment of “anti-monotone” chains and (see his
Section 11.2) indeed to generic chains. A valuable background resource on perfect
sampling methods is the annotated bibliography maintained by Wilson [44].

The goal of the present paper is to discuss the modifications to Fill’s algorithm
needed to apply it to generic chains, on general (not necessarily finite) state spaces.
Our basic algorithm is presented in Section 2 as Algorithm 2.1. An infinite-
time-window version of Algorithm 2.1 (namely, Algorithm 3.1) is presented in
Section 3. A simple illustrative example is presented in Section 4, while rigorous
mathematical details are presented in Section 6.
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In Section 5 we discuss how the computational burden of tracking all of the
trajectories in Algorithm 2.1 can be eased by the use of coalescence detection
events in general and bounding processes in particular; these processes take on a
very simple form (see Section 7.1) when the state space is partially ordered and
the transition rule employed is monotone. A weaker form of monotonicity is also
handled in Section 7.

In Section 8 we compare Algorithm 2.1 and CFTP. We also present a simple
connection between CFTP and Algorithm 3.1. Finally, in Section 9 we discuss
the perfect generation of samples from π of size larger than 1.

We hope that our extension of Fill’s algorithm will stimulate further research
into this less-used alternative for perfect MCMC simulation.

Notational note: Throughout the paper, we adopt the probabilist’s usual short-
hand of writing {X ∈ B} for the event {ω ∈ Ω : X(ω) ∈ B} when X is a random
element defined on a sample space Ω.

2 The algorithm in brief

We assume here that our Markov chain may be written in the stochastic
recursive sequence form

Xs = φ(Xs−1,Us)(2.1)

where (Us) is an i.i.d. sequence having distribution (say) µ.
Omitting technical details, our interruptible algorithm for generic chains is

conceptually quite simple and proceeds as follows.

Algorithm 2.1 Choose and fix a positive integer t, choose an initial state Xt, and
perform the following routine. Run the time-reversed chain K̃ for t steps [see (6.5)
for the formal definition of K̃], obtaining Xt−1, . . . ,X0 in succession. Then (con-
ditionally given X0, . . . ,Xt) generate U1, . . . ,Ut independently, with Us chosen
from its conditional distribution given (2.1) (s = 1, . . . , t). Then, for each ele-
ment x of the state space X , compute chains (Y0(x), . . . ,Yt(x)), with Y0(x) := x
and Ys(x) := φ(Ys−1(x),Us) for s = 1, 2, . . . , t. Note that Ys(X0) = Xs for
s = 1, . . . , t. Finally, check whether all the values Yt(x), x ∈ X , agree (in which
case, of course, they all equal Xt). If they do, we call this coalescence, and the
routine succeeds and reports W := X0 as an observation from π. If not, then
the routine fails; we then start the routine again with an independent simulation
(perhaps with a fresh choice of t and Xt), and repeat until the algorithm succeeds.

Remark 2.2 The algorithm works for π-almost every deterministic choice of initial
state Xt. Alternatively, the algorithm works provided one chooses Xt from any
distribution absolutely continuous with respect to π. See also Remark 6.9(c).
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Here is the basic idea of why the algorithm works correctly. Imagine (1) start-
ing the construction with X0 ∼ π and independently (2) simulating U1, . . . ,Ut.
Determination of coalescence and the value of the coalesced paths at time t each
rely only on the second piece of randomness. It follows that, conditionally given
coalescence, X0 and Xt are independent. Hence, conditionally given coalescence
and Xt, we will still have X0 ∼ π, as desired. The algorithm constructs the ran-
dom variables in a different order, but conditional on coalescence and the value
of Xt, the joint distributions are the same.

Remark 2.3 (a) Note that no assumption is made in Algorithm 2.1 concerning
monotonicity or discreteness of the state space.

(b) This algorithm is, like Fill’s original algorithm [11], a form of rejection
sampling (see, e.g., Devroye [6]). This is explained in Section 2 of [14].

(c) We have reversed the direction of time, and the roles of the kernels K
and K̃, compared to Fill [11].

(d) Algorithm 2.1 is interruptible, in the sense of Fill [11].
(e) Fill’s original algorithm [11] also incorporated a search for a good value

of t by doubling the previous value of t until the first success. For the most part,
we shall not address such issues, instead leaving the choice of t entirely up to the
user; but see Section 3.

In Section 6, we will carefully discuss the underlying assumptions for Algo-
rithm 2.1 and the details of its implementation, and also establish rigorously that
the algorithm works as desired. This will be done by first developing, and then
applying, results in a rather more general framework.

3 A modified algorithm which searches for t

Thus far we have been somewhat sketchy about the choice(s) of t in Algo-
rithm 2.1. As discussed in Remark 2.3(e), one possibility is to run the repetitions
of the basic routine independently, doubling t at each stage. However, another
possibility is to continue back in time, reusing the already imputed values Us and
checking again for coalescence. (There is an oblique reference to this alternative
in Remark 9.3 of Fill [11].) This idea leads to the following algorithm.

Algorithm 3.1 Choose an initial state X0 ∼ π̂, where π̂ is absolutely continu-
ous with respect to π. Run the time-reversed chain K̃, obtaining X0,X−1, . . . in
succession. Then (conditionally given X0, . . . ,Xt) generate U0,U−1, . . . indepen-
dently, with Us chosen from its conditional distribution given (2.1) (s = 0,−1, . . .).

For t = 0, 1, . . . and x ∈ X , set Y
(−t)
−t (x) := x and, inductively,

Y(−t)
s (x) := φ(Y

(−t)
s−1 (x),Us), −t+ 1 ≤ s ≤ 0.
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If T <∞ is the smallest t such that

Y
(−t)
0 (x), x ∈ X , all agree (and hence all equal X0),(3.1)

then the algorithm succeeds and reports W := X−T as an observation from π. If
there is no such T, then the algorithm fails.

Here is the basic idea of why the algorithm works correctly. Imagine (1) start-
ing the construction with W ∼ π, and, independently, (2) simulating U0,U−1, . . .
[and then, after determining T, setting X−T := W and Xs := φ(Xs−1,Us) for
s = −T + 1, . . . , 0]. Determination of T and the value of X0 each rely only on the
second piece of randomness. It follows that, conditionally given coalescence, X−T

and X0 are independent. Hence, conditionally given coalescence and X0, we will
still have X−T ∼ π, as desired. As before, the algorithm constructs the random
variables in a different order, but conditional on coalescence and the value of Xt,
the joint distributions are the same.

Remark 3.2 (a) We need only generate X0,X−1, . . . ,X−t and then impute U0,
U−1, . . . ,U−t+1 in order to check whether or not (3.1) holds. Thus, as long as
T <∞, the algorithm runs in finite time.

(b) One can formulate the algorithm rigorously in the fashion of Section 6.2,
and verify that it works properly. We omit the details.

(c) Algorithm 3.1 is also interruptible: specifically, T and W are conditionally
independent given success.

(d) See also the discussion of a “doubling” search strategy in Section 5 below.

4 A simple illustrative example

We illustrate Algorithm 2.1 for a very simple example (for which direct sam-
pling from π would be elementary, of course) and two different choices of transition
rule. Consider the discrete state space X = {0, 1, 2}, and let π be uniform on X .
Let K correspond to simple symmetric random walk with holding probability 1/2
at the endpoints; that is, putting k(x, y) := K(x, {y}),

k(0, 0) = k(0, 1) = k(1, 0) = k(1, 2) = k(2, 1) = k(2, 2) = 1/2,

k(0, 2) = k(1, 1) = k(2, 0) = 0.

The stationary distribution is π. As for any ergodic birth-and-death chain, K is
reversible with respect to π, i.e., K̃ = K. Before starting the algorithm, choose a
transition rule; this is discussed further below.

For utter simplicity of description, we choose t = 2 and (deterministically)
Xt = 0 (say); as discussed near the end of Section 6.2, a deterministic start is
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permissible here. We then choose X1 ∼ K(0, ·) and X0 |X1 ∼ K(X1, ·). How we
proceed from this juncture depends on what we chose (in advance) for φ.

One choice is the independent-transitions rule [discussed further in Remarks
6.7(c) and 6.11(b) below]. The algorithm’s routine can then be run using 6 in-
dependent random bits: these decide X1 (given X2), X0 (given X1), and the 4
transitions in the second (forward) phase of the routine not already determined
from the rule

Xs−1 7→ Xs from time s− 1 to time s (s = 1, 2).

There are thus a total of 26 = 64 possible overall simulation results, each having
probability 1/64. We check that exactly 12 of these produce coalescence. Of
these 12 accepted results, exactly 4 have X0 = 0, another 4 have X0 = 1, and
a final 4 have X0 = 2. Thus P(C) = 12/64 = 3/16, and we confirm that
L(X0|C) = π, so the algorithm is working correctly. (An identical result holds if
we had instead chosen Xt = 1 or Xt = 2.)

An alternative choice adapts Remarks 6.7(b) and 6.11(c) to the discrete setting
of our present example. We set

φ(·, u) =





the mapping taking 0, 1, 2 to 0, 0, 1, respectively, if u = 0

the mapping taking 0, 1, 2 to 1, 2, 2, respectively, if u = 1

where u is uniform on {0, 1}. Choosing t = 2 and Xt = 0 as before, the algorithm
can now be run with just 2 random bits. In this case we check that exactly 3 of
the 4 possible simulation results produce coalescence, 1 each yielding X0 = 0, 1, 2.
Note that P(C) = 3/4 is much larger for this choice of φ. In fact, since φ is a
monotone transition rule [see Definition 4.2 in Fill [11] or (7.1) below], for the
choice Xt = 0 it gives the highest possible value of P(C) among all choices of φ:
see Remark 9.3(e) in Fill [11]. It also is a best choice when Xt = 2. [On a
minor negative note, we observe that P(C) = 0 for the choice Xt = 1. Also note
that the π-average of the acceptance probabilities (3/4, 0, 3/4), namely, 1/2, is the
probability that forward coupling (or CFTP) done with the same transition rule
gives coalescence within 2 time units; this corroborates Remark 6.9(c) below.]

Remark 4.1 Both choices of φ are easily extended to handle simple symmetric
random walk on {0, . . . , n} for any n. If Xt = 0, then the second (monotone)
choice is again best possible. For fixed c ∈ (0,∞) and large n, results in Fill [11]
and Section 4 of Diaconis and Fill [7] imply that, for t = cn2 and Xt = 0, the
routine’s success probability is approximately p(c); here p(c) increases smoothly
from 0 to 1 as c increases from 0 to∞. We have not attempted the corresponding
asymptotic analysis for the independent-transitions rule.
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5 Conservative detection of coalescence

(Note: In order to focus on the main ideas, in this Section 5—as in the previous
sections—we will suppress measure-theoretic and other technical details. In an
earlier draft we provided these details; we trust that the interested reader will be
able to do the same, using the rigorous treatment of Algorithm 2.1 in Section 6 as
a guide. Also note that the terminology used in this section—detection process,
bounding process, etc.—has varied somewhat in the perfect sampling literature.)

Even for large finite state spaces X , determining exactly whether or not co-
alescence occurs in Algorithm 2.1 can be prohibitively expensive computation-
ally; indeed, in principle this requires tracking each of the trajectories ~Y(x) :=
(Y0(x), . . . ,Yt(x)), x ∈ X , to completion.

However, suppose that E is an event which is a subset of the coalescence event.
That is, whenever E occurs, coalescence occurs (but perhaps not conversely).
Assume further that E, like the coalescence event, is an event whose occurrence
(or not) is determined solely by U1, . . . ,Ut. Then Algorithm 2.1 remains valid
if, instead of accepting W whenever coalescence occurs, we accept only when
the event E occurs. Indeed, the explanation for why Algorithm 2.1 works goes
through without change in this case.

It follows that, when implementing Algorithm 2.1, it is permissible to use
conservative detection of coalescence, i.e., to accept W as an observation from π
if and only if some event E occurs, provided that E is a subset of the coalescence
event and is a function of U1, . . . ,Ut only. We call such an event E a coalescence
detection event .

Similar considerations apply to Algorithm 3.1. Indeed, let T be as in that
algorithm. Let T′ be any other positive-integer-valued random variable, which
is completely determined by U0,U−1, . . . and is such that T′ ≥ T. Then Al-
gorithm 3.1 remains valid if we replace T by T′, i.e., if we report W′ := X−T′

instead of reporting X−T. Indeed, the explanation for why Algorithm 3.1 works
goes through without change in this case.

For example, we might choose in Algorithm 3.1 to let T′ be the smallest t
which is a power of 2 such that (3.1) holds and report X−T′ instead. This has the
computational efficiency advantage (similar to that of CFTP) that we can use a
“doubling” search strategy, trying t = 1, 2, 4, 8, . . . in succession, until we find the
first time t (= T′) such that (3.1) holds.

In such a case, and in other cases discussed below, conservative coalescence
detection will often lead to easier and faster application of our algorithms. Thus,
such detection may be of considerable help in practical applications.
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5.1 Detection processes

In practice, a coalescence detection event is constructed in terms of a detec-
tion process . What we mean by this is a stochastic process ~D = (D0, . . . ,Dt),

defined on the same probability space as ~U = (U1, . . . ,Ut) and ~X = (X0, . . . ,Xt),
together with a subset ∆ of its state space D, such that

(a) ~D is constructed solely from ~U, and

(b) {Ds ∈ ∆ for some s ≤ t} ⊆ {Yt(x) does not depend on x}.

Then E := {Ds ∈ ∆ for some s ≤ t} is a coalescence detection event.

Remark 5.1 In practice, ~D usually evolves Markovianly using ~U; more precisely,
it is typically the case that there exists deterministic d0 ∈ D such that D0 = d0

and ~D has the stochastic recursive sequence form [paralleling (2.1)]

Ds := δ(Ds−1,Us), 1 ≤ s ≤ t.

The important consequence is that, having determined the trajectory ~X and
the imputed ~U, the user need only follow a single trajectory in the forward phase
of the routine, namely, that of ~D.

Example 5.2 We sketch two illustrative examples of the use of detection processes
that do not immediately fall (see Remark 5.3 below) into the more specific settings
of Sections 5.2 or 7.1. We hasten to point out, however, that because of the highly
special structure of these two examples, efficient implementation of Algorithm 2.1
avoids the use of the forward phase altogether; this is discussed for example (a)
in Fill [12].

(a) Our first example is provided by the move-to-front (MTF) rule studied
in [12]. Let K be the Markov kernel corresponding to MTF with independent and
identically distributed record requests corresponding to probability weight vector
(w1, . . . , wn); see (2.1) of [12] for specifics. The arguments of Section 4 of [12]
show that if Ds is taken to be the set of all records requested at least once among
the first s requests and ∆ is taken to consist of all (n − 1)-element subsets of

the records 1, . . . , n, then ~D is a detection process. Similar detection processes
can be built for the following generalizations of MTF: move-to-root for binary
search trees (see Dobrow and Fill [9] [10]) and MTF-like shuffles of hyperplane
arrangement chambers and more general structures (see Bidigare, et al. [1] and
Brown and Diaconis [3]).

(b) A second example of quite similar spirit is provided by the (now well-
known) Markov chain (Xt) for generating a random spanning arborescence of the
underlying weighted directed graph, with vertex set U , of a Markov chain (Ut)
with state space U and kernel q. Consult Propp and Wilson [39] (who also discuss
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a more efficient “cycle-popping” algorithm) for details. We consider here only the
special case that (Ut) is an i.i.d. sequence, i.e., that q(v, w) ≡ q(w). A transition
rule φ for the chain (Xt) is created as follows: for vertex u and arborescence x
with root r, φ(x, u) is the arborescence obtained from x by adding an arc from r
to u and deleting the unique arc in x whose tail is u. Then it can be shown that
if Ds is taken to be the set of all vertices appearing at least once in (U1, . . . ,Us)

and ∆ := {U}, then ~D is a detection process.

5.2 Bounding processes

We obtain a natural and useful example of a detection process ~D when (a) ~D is

constructed solely from ~U, (b) the corresponding state space D is some collection
of subsets of X , with

∆ := {{z} : z ∈ X},
and

(c) Ds ⊇ {Ys(x) : x ∈ X}.
The concept is simple: in this case, each set Ds is just a “conservative estimate”
(i.e., a superset) of the corresponding set {Ys(x) : x ∈ X} of trajectory values;

thus if Ds = {z}, then the trajectories ~Y(x) are coalesced to state z at time s
and remain coalesced thereafter. We follow the natural impulse to call such a
set-valued detection process a bounding process . Such bounding processes arise
naturally in the contexts of monotone (and anti-monotone) transition rules, and
have been used by many authors: see Section 7.1. Other examples of bounding
processes can be found in Häggström and Nelander [20] (for CFTP) and in works
of Huber: see [22] and [23] in connection with CFTP and [24] in connection with
our algorithm.

Of course, nothing is gained, in comparison to tracking all the trajectories, by
the use of a bounding process unless the states of D have more concise representa-
tions than those of generic subsets of X ; after all, we could always choose D = 2X

and Ds = {Ys(x) : x ∈ X}. One rather general, and frequently applied, setting
where compact representations are possible, discussed in Section 7.1, is that of a
realizably monotone chain on a partially ordered set (poset) X . See the references
listed in Remark 7.4(a) for examples of the use of bounding processes for such
chains.

See also Remark 7.4(b) for a brief discussion of the closely related concept of
“dominating process.”

Remark 5.3 With our algorithm, one can take advantage of detection processes
that are more general than bounding processes. Consider Example 5.2(a) as an
illustrative case. Suppose we start the first (i.e., time-reversed) phase of our algo-
rithm in the identity permutation (as is done in [12]). When we run the forward-
time phase of the algorithm, we only need to keep track of the unordered set of
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records requested; this is what the detection process ~D of Example 5.2(a) does. If
the event E of Section 5.1 occurs, that is, if all, or all but one, of the records have
been requested at least once by time t, then we have detected coalescence. Then,
without further work, we know the state to which the trajectories have coalesced:
namely, our initial identity permutation. To maintain a bounding process for this
same example, we would have to do more work: we would have to keep track of
the ordered set of records requested, ordered by most recent request. (Note that a
bounding process could be constructed by combining information from the dom-
inating process and the trajectory generated in the algorithm’s initial backward
phase. But it is not useful to do so.)

6 A mathematically rigorous framework

6.1 The formal framework

We now formally set up a general framework for rejection sampling using
auxiliary randomness, paying careful attention to technical details. We will apply
this framework not only to provide a rigorous treatment of Algorithm 2.1 (in
Section 6.2), but also (independently) to handle a variant (Algorithm 7.2) that
applies to a stochastically monotone kernel K.

We need to set up two probability spaces. In our main application to Algo-
rithm 2.1, the first space (Ω,A, P )—designated in ordinary typeface—will be use-
ful for theoretical considerations and for the computation of certain conditional
probability distributions. The second space (Ω,A,P)—designated in boldface
type—will be the probability space actually simulated when the algorithm is run.
All random variables defined on the first space (respectively, second space) will
also be designated in ordinary typeface (resp., boldface type). We have chosen this
notational system to aid the reader: Corresponding variables, such as X0 and X0,
will play analogous roles in the two spaces.

Recall that for a measurable space (Z,F) and a (not necessarily measurable)
subset E ⊆ Z, the trace σ-field (on the sample space E) is the σ-field {E ∩ F :
F ∈ F}. In setting up both probability spaces, we assume:

(i) (X ,B) and (X ′,B′) are measurable spaces, B′ ⊆ X ′, and B′′ is the trace
σ-field for B′

(ii) π is a probability measure on B.

For our first probability space, we also assume that

(iii) (Ω,A, P ) is a probability space on which are defined mappings X : Ω→ X
and X ′ : Ω→ X ′ and Y : Ω→ X ′ and a set C ⊆ Ω
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(iv) X is measurable from A to B, with L(X) = PX−1 = π

and that the following two conditions hold, for every B′′ ∈ B′′:

(v) {X ′ ∈ B′′} ∩ C ∈ A and {Y ∈ B′′} ∩ C ∈ A

(vi) P ({X ′ ∈ B′′}∩C |X ∈ B) = P ({Y ∈ B′′}∩C) for all B ∈ B with π(B) > 0.

Notice that (v) and (vi) are implied by

(v′) {X ′ ∈ B′′}∩C ∈ A, Y = X ′ on the set C, andX and the event {Y ∈ B′′}∩C
are independent.

Proposition 6.1 Under assumptions (i)–(vi),

P ({X ′ ∈ B′′} ∩ C ∩ {X ∈ B}) = P ({X ′ ∈ B′′} ∩ C) π(B)(6.1)

for every B ∈ B and every B′′ ∈ B′′.

Proof. We may assume π(B) > 0, in which case (vi) implies

P ({X ′ ∈ B′′} ∩ C ∩ {X ∈ B}) = P ({Y ∈ B′′} ∩ C) π(B),(6.2)

P ({X ′ ∈ B′′} ∩ C) = P ({Y ∈ B′′} ∩ C)(6.3)

for general B ∈ B and for B = X , respectively. Substituting (6.3) into (6.2)
gives (6.1).

Two corollaries follow immediately:

Corollary 6.2 Under assumptions (i)–(vi), if P ({X ′ ∈ B′} ∩ C) > 0, then

L(X | {X ′ ∈ B′} ∩ C) = π.

Corollary 6.3 Suppose assumptions (i)–(vi) hold for B′ = X ′; in particular, (v)
then implies that C ∈ A. Suppose also that X ′ is measurable from A to B′.
Assume P (C) > 0. Then

X ′ and X are conditionally independent given C, and L(X|C) = π.

Now we set up the second probability space. Specifically, consider the following
assumptions: that

(vii) (Ω,A,P) is a probability space on which are defined mappings X : Ω→ X
and X′ : Ω→ X ′ and a set C ⊆ Ω

(viii) X is measurable from A to B,
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that, for every B′′ ∈ B′′, we have

(ix) {X′ ∈ B′′} ∩C ∈ A,

and that we have the following basic connection between the two spaces:

(x) The measure
P({X′ ∈ dx′} ∩C ∩ {X ∈ dx})

on the product space (B′ × X ,B′′ ⊗ B) has a density D(x, x′) ≡ D(x′)
(x′ ∈ B′) that doesn’t depend on x ∈ X with respect to the measure

P ({X ′ ∈ dx′} ∩ C ∩ {X ∈ dx}).

Notice that (x) is implied by conditions (x′)–(x′′′), wherein L(X′) = P(X′)−1:

(x′) B′ = X ′, and X ′ and X′ are measurable (from A and A, respectively, to B′)
(x′′) L(X′)¿ L(X ′), with Radon–Nikodym derivative D

(x′′′) There exists a conditional subprobability distribution

P (C ∩ {X ∈ dx} |X ′ = x′), x′ ∈ X ′,
which also serves as conditional subprobability distribution

P(C ∩ {X ∈ dx} |X′ = x′), x′ ∈ X ′.

It is now key that the results of Proposition 6.1 and Corollaries 6.2 and 6.3
carry over to our second space:

Proposition 6.4 Under assumptions (i)–(x),

P({X′ ∈ B′′} ∩C ∩ {X ∈ B}) = P({X′ ∈ B′′} ∩C) π(B)(6.4)

for every B ∈ B and every B′′ ∈ B′′.
Proof. Let D be the Radon–Nikodym derivative guaranteed by assumption (x).
Then, using Proposition 6.1,

P({X′ ∈ B′′} ∩C ∩ {X ∈ B}) =
∫

B′′
D(x′)P ({X ′ ∈ dx′} ∩ C ∩ {X ∈ B})

=
∫

B′′
D(x′)P ({X ′ ∈ dx′} ∩ C) π(B).

As usual, setting B = X and substituting, we obtain (6.4).

Corollary 6.5 Under assumptions (i)–(x), if P({X′ ∈ B′} ∩C) > 0, then

L(X | {X′ ∈ B′} ∩C) = π.

Corollary 6.6 Suppose assumptions (i)–(x) hold for B′ = X ′. Suppose also that
X′ is measurable from A to B′. Assume P(C) > 0. Then

X′ and X are conditionally independent given C, and L(X|C) = π.
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6.2 Details for Algorithm 2.1

The goal of this subsection is to describe when and how Algorithm 2.1 can be
applied legitimately.

The space (X ,B): Recall that a Polish space is a complete separable metric
space. For convenience, we shall assume that the measurable state space (X ,B) of
interest (on which the probability measure π of interest is defined) is isomorphic
to a Borel subset of a Polish space (with its trace Borel σ-field). This assumption
will at once guarantee the existence of such objects as conditional distributions
that would otherwise require individual arguments or assumptions. We call such a
space a standard Borel space. Our assumption should cover most cases of applied
interest.

The kernel K and its time-reversal K̃: Let K : X × B → [0, 1] be a Markov
transition kernel on X ; that is, we suppose that K(x, ·) is a probability measure
on B for each x ∈ X and that K(·, B) is a B-measurable function for each B ∈ B.
The kernel is chosen (by the user) so that π is a stationary distribution, i.e., so
that ∫

X
π(dx)K(x, dy) = π(dy) on X .

Since (X ,B) is standard Borel, there exists “a conditional distribution the other
way around”—more precisely, a Markov kernel K̃ on X satisfying

π(dx)K(x, dy) = π(dy)K̃(y, dx) on X × X .(6.5)

Given π and K, the kernel K̃(y, dx) is π(dy)-almost surely uniquely defined. We
choose and fix such a K̃.

The transition rule φ: It can be shown that there exists a transition rule
which can be used to drive the construction of the Markov chain of interest. More
precisely, our assumption that (X ,B) is standard Borel implies that there exists
a standard Borel space (U ,F), a product-measurable function φ : X × U → X ,
and a probability measure µ on F , such that

K(x,B) = µ{u : φ(x, u) ∈ B}, x ∈ X , B ∈ B.(6.6)

Such φ (with accompanying µ) is sometimes called a transition rule. We choose
and fix such a (φ, µ).

Remark 6.7 (a) Conversely, if φ has the stated properties andK is defined by (6.6),
then K is a Markov kernel.

(b) A transition rule φ can always be found that uses (U ,F , µ) = ([0, 1],Borels,
uniform distribution). The proof of existence (cf. Theorem 1.1 in Kifer [29] and
Remark (iv) at the end of Section 5.2 in Diaconis and Freedman [8]) makes use of
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inverse probability transforms and certain standard reduction arguments. In the
special case that (X ,B) = ([0, 1],Borels), we can in fact use

φ(x, u) ≡ G(x, u)

where G(x, ·) is the usual inverse probability transform corresponding to the dis-
tribution function u 7→ K(x, [0, u]).

(c) If (X ,B) is any discrete space (i.e., if X is countable and B is the total σ-
field), a very simple alternative choice is the following “independent-transitions”
transition rule. Let U = XX (with F the product σ-algebra), let µ be product
measure with xth marginal K(x, ·) (x ∈ X ), and let φ be the evaluation function

φ(x, u) := u(x).

(d) Many interesting examples of transition rules can be found in the literature,
including Diaconis and Freedman [8] and the references cited in Section 1.

(e) Usually there is a wealth of choices of transition rule, and the art is to find
one giving rapid and easily detected coalescence. Without going into details at
this point, we remark that the transition rule in (c) usually performs quite badly,
while transition rules having a certain monotonicity property will perform well
under monotonicity assumptions on K.

The Markov chain and the first probability space: From our previous comments
it is now easy to see that there exists a standard Borel space (U ,F), a transition
rule (φ, µ), and a probability space (Ω,A, P ) on which are defined independent
random variables X0, U1, U2, . . . , Ut with X0 ∼ π and each Us ∼ µ. Now induc-
tively define

Xs := φ(Xs−1, Us), 1 ≤ s ≤ t.(6.7)

Then ~X := (X0, . . . , Xt) is easily seen to be a stationary Markov chain with
kernel K, in the sense that

P (X0 ∈ dx0, . . . , Xt ∈ dxt) = π(dx0)K(x0, dx1)· · ·K(xt−1, dxt) on X t+1.(6.8)

In fact, for each x ∈ X we obtain a chain with kernel K started from x by defining
Y0(x) := x and, inductively,

Ys(x) := φ(Ys−1(x), Us).

Let ~Y (x) := (Y0(x), . . . , Yt(x)). In this notation we have ~Y (X0) = ~X. Recalling
the notational note at the end of Section 1, let

C := {Yt(x) does not depend on x}(6.9)

denote the set of sample points ω for which the trajectories ~Y (x) have all coalesced

by time t. We assume that C belongs to the σ-field σ〈~U〉 generated by ~U :=
(U1, . . . , Ut).
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Remark 6.8 For this remark, suppose that X is a Borel subset of a Polish space
(and hence a separable metric space in its own right). We will prove that continuity

of the transition rule φ(x, u) in x ∈ X for each u ∈ U is sufficient for C ∈ σ〈~U〉,
and we note that this is automatic if X is discrete.

As guaranteed by separability of X , let D be a countable dense subset of X .
Given z ∈ X and ε ≥ 0, let Bz(ε) denote the closed ball of radius ε centered at z.

Suppose that φ(·, u) is continuous for each u ∈ U . Define the iterates φs : X ×
U s → X (s = 1, 2, . . . , t) inductively by φ1 := φ and

φs(x; u1, . . . , us) := φ(φs−1(x; u1, . . . , us−1); us).

Note that φt is, like φ, continuous in its first argument, and that Yt(x) = φt(x; ~U).
Using the separability of X , it is not hard to show that

C = ∩∞n=1 ∪z∈D ∩x∈D{φt(x; ~U) ∈ Bz(1/n)},

from which the desired measurability of C is evident.

Now observe that conditions (i)–(iv) and (v′) in Section 6.1 are satisfied by
fixing x∗0 ∈ X arbitrarily and taking

(X ′,B′) = (X ,B), B′ = X ′, B′′ = B,(6.10)

X = X0, X ′ = Xt, Y = Yt(x
∗
0), C as at (6.9).

Note that the independence in (v′) follows from the fact that X0 and ~U have been
chosen to be independent.

The second probability space and the algorithm: The key to setting up the
second probability space is to satisfy assumption (x′′′) in Section 6.1. In calculating
the first-space conditional distribution mentioned there, we will make use of the
auxiliary randomness provided by X1, . . . , Xt−1 and ~U and compute in stages.
First observe from (6.8) and repeated use of (6.5) that

P (X0 ∈ dx0, . . . , Xt−1 ∈ dxt−1 |Xt = xt) = K̃(xt, dxt−1) · · · K̃(x1, dx0)

serves as a conditional distribution for (X0, . . . , Xt−1) given Xt = xt. Next, we will

discuss in Section 6.3 how to compute L(~U | ~X = ~x). Finally, from our assumption

that C ∈ σ(~U), it follows that we can write the indicator Z := IC as Z = Γ(~U)
for some product-measurable Γ : U t → {0, 1}, and one can check the intuitively
obvious assertion that unit mass at Γ(~u) serves as a conditional distribution for Z

given ( ~X, ~U) = (~x, ~u). We get the conditional distribution in (x′′′) by chaining
together the conditional distributions we have computed and integrating out the
auxiliary variables, in the obvious and standard fashion.
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Moreover, our discussion has indicated how to set up and simulate the second
space. To satisfy assumption (x′′) in Section 6.1, we assume that the law of Xt

chosen by the user is absolutely continuous with respect to π; of course we do
not assume that the user can compute the Radon–Nikodym derivative D. [For
example, in the common situation that (X ,B) is discrete and π(x) > 0 for every
x ∈ X , the value of Xt can be chosen deterministically and arbitrarily.] Having
chosen Xt = xt, the user draws an observation Xt−1 = xt−1 from K̃(xt, ·), then

an observation Xt−2 = xt−2 from K̃(xt−1, ·), etc. Next, having chosen ~X = ~x

[i.e., (X0, . . . ,Xt) = (x0, . . . , xt)], the user draws an observation ~U = ~u from

L(~U | ~X = ~x). Finally, the user sets Z = Γ(~u) and declares that C, or coalescence,
has occurred if and only if Z = 1. With the definitions (6.10), C as above, and

X = X0, X′ = Xt,

assumptions (i)–(x) are routinely verified. According to Corollary 6.6, if
P(C) > 0, then L(X0|C) = π. It follows that the conditional distribution of
output from Algorithm 2.1 given that it ultimately succeeds (perhaps only after
many iterations of the basic routine) is π, as desired.

Remark 6.9 (a) If P(C) > 0 for suitably large t, then ultimate success is (a.s.)
guaranteed if the successive choices of t become large. A necessary condition for
ultimate positivity of P(C) is uniform ergodicity of K. This condition is also
sufficient, in the (rather weak) sense that if K is uniformly ergodic, then there
exists a finite integer m and a transition rule φm for the m-step kernel Km such
that Algorithm 2.1, applied using φm, has P(C) > 0 when t is chosen sufficiently
large. Compare the analogous Theorem 4.2 for CFTP in Foss and Tweedie [15].

A similar remark applies to Algorithm 3.1.
(b) Just as discussed in Fill [11] (see especially the end of Section 7 there),

the algorithm (including its repetition of the basic routine) we have described is
interruptible; that is, its running time (as measured by number of Markov chain
steps) and output are independent random variables, conditionally given that the
algorithm eventually terminates.

(c) If the user chooses the value of Xt (= z, say) deterministically, then all
that can be said in general is that the algorithm works properly for π-a.e. such
choice. In this case, let the notation Pz(C) reflect the dependence of P(C) on the
initial state z. Then clearly

∫
Pz(C) π(dz) = P (C),

which is the unconditional probability of coalescence in our first probability space
and therefore equal to the probability that CFTP terminates over an interval of
width t. This provides a first link between CFTP and Algorithm 2.1. Very roughly
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recast, the distribution of running time for CFTP is the stationary mixture, over
initial states, of the distributions of running time for Algorithm 2.1. For further
elaboration of the connection between the two algorithms, see Section 8.2.

6.3 Imputation

In order to be able to run Algorithm 2.1, the user needs to be able to impute ~U
from ~X, i.e., to draw from L(~U | ~X = ~x). In this subsection we explain how to do
this.

We proceed heuristically at first:

P (~U ∈ d~u | ~X = ~x)

= P (~U ∈ d~u |X0 = x0, φ(x0, U1) = x1, . . . , φ(xt−1, Ut) = xt) by (6.7)

= P (~U ∈ d~u |φ(x0, U1) = x1, . . . , φ(xt−1, Ut) = xt) by indep. of X0 and ~U

= P (U1 ∈ du1 |φ(x0, U1) = x1)× · · · × P (Ut ∈ dut |φ(xt−1, Ut) = xt)

by independence of U1, . . . , Ut

= P (U1 ∈ du1 |φ(x0, U1) = x1)× · · · × P (U1 ∈ dut |φ(xt−1, U1) = xt)

since U1, . . . , Ut are identically distributed

= P (U1 ∈ du1 |X0 = x0, X1 = x1)× · · · × P (U1 ∈ dut |X0 = xt−1, X1 = xt),

where the last equality is justified in the same fashion as for the first two.
In fact, the result of this heuristic calculation is rigorously correct; its proof is

an elementary but not-entirely-trivial exercise in the use of conditional probability
distributions. The existence (and a.s. uniqueness) of a conditional distribution
L(U1 |X0 = ·, X1 = ·) is guaranteed by the fact that (U ,F) is standard Borel;
moreover,

Lemma 6.10 The t-fold product of the measures

P (U1 ∈ du1 |X0 = x0, X1 = x1), . . . , P (U1 ∈ dut |X0 = xt−1, X1 = xt)

serves as a conditional probability distribution P (~U ∈ d~u | ~X = ~x).

In setting up the second probability space, therefore, the user, having chosen
~X = ~x, draws an observation ~U = ~u by drawing U1, . . . ,Ut independently, with
Us chosen according to the distribution L(U1 |X0 = xs−1, X1 = xs).

Remark 6.11 (a) There are subtleties involved in the rigorous proof of Lemma 6.10.
In particular, there is no justification apparent to us, in general, that the condi-
tional distributions L(U1 |φ(x0, U1) = ·), one for each fixed x0 ∈ X , can be chosen
in such a way that P (U1 ∈ F |φ(x0, U1) = x1) is jointly measurable in (x0, x1) for
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each F ∈ F . Nevertheless, if we assume such measurability, then one can show
rigorously that

P (U1 ∈ du1 |φ(x0, U1) = x1)× · · · × P (U1 ∈ dut |φ(xt−1, U1) = xt)

serves as P (~U ∈ d~u | ~X = ~x).
(b) If (X ,B) is discrete, then of course the measurability in (a) is auto-

matic. Suppose we use the “independent-transitions” rule φ discussed in Re-
mark 6.7(c). Then the measure µ, but with the x0th marginal replaced by δx1 ,
serves as L(U1 |φ(x0, U1) = x1) = L(U1 |U1(x0) = x1) and therefore as L(U1 |X0 =
x0, X1 = x1). Informally stated, having chosen Xs = xs and Xs−1 = xs−1, the
user imputes the forward-trajectory transitions from time s − 1 to time s in Al-
gorithm 2.1 by declaring that the transition from state xs−1 is to state xs and
that the transitions from other states are chosen independently according to their
usual non- ~X-conditioned distributions.

(c) As another example, suppose that X = [0, 1] and we use the inverse proba-
bility transform transition rule discussed in Remark 6.7(b). Suppose also that each
distribution function F (x0, ·) = K(x0, [0, ·]) is strictly increasing and onto [0, 1]
and that F (x0, x1) is jointly Borel-measurable in x0 and x1. Then δF (x0,x1) serves
as L(U1 |X0 = x0, X1 = x1). Informally stated, a generated pair (Xs,Xs−1) =
(xs, xs−1) completely determines the value F (xs−1, xs) for Us.

7 Monotonicity

Throughout Section 7 we suppose that (X ,B) is a Polish space with (Borel
σ-field and) closed partial order ≤; the meaning of closed here is that {(x, y) ∈
X × X : x ≤ y} is assumed to be closed in the product topology. [For example,
closedness is automatic for any partial order if (X ,B) is discrete.] We also assume
that there exist (necessarily unique) elements 0̂ and 1̂ in X (called bottom element
and top element , respectively) such that 0̂ ≤ x ≤ 1̂ for all x ∈ X .

We require the notion of stochastic monotonicity, according to the following
definitions (which extend Definition 4.1 of Fill [11] to our more general setting).

Definition 7.1 (a) A subset B of X is called a down-set or order ideal if, whenever
x ∈ B and y ≤ x, we have y ∈ B.

(b) Given two probability measures ν1 and ν2 on B, we say that ν1 ≤ ν2

stochastically , and write ν1 ¹ ν2, if ν1(B) ≥ ν2(B) for every closed down-set B.
(c) A kernel K is said to be stochastically monotone (SM) if K(x, ·) ¹ K(y, ·)

whenever x ≤ y.

The main goal of this section is to describe an analogue of Algorithm 2.1
which applies when only stochastic monotonicity of K is assumed. Here is a
rough formulation; the details will be discussed in Section 7.2.
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Algorithm 7.2 Consider a stochastically monotone kernel K on a partially ordered
set with bottom element 0̂ and top element 1̂. Choose and fix a positive integer t,
set Xt = 0̂, and perform the following routine. Run the time-reversed chain K̃
for t steps, obtaining Xt,Xt−1, . . . ,X0 in succession. Then, reversing the direction
of time, generate a chain, say ~Y = (Y0, . . . ,Yt), with Y0 = 1̂ and kernel K; this

trajectory is to be coupled ex post facto with ~X = (X0, . . . ,Xt), which is regarded
as a trajectory from K. Finally, we check whether Yt = 0̂. If so, the value X0 is
accepted as an observation from π; if not, we repeat (as for Algorithm 2.1, but
always with Xt = 0̂).

Remark 7.3 When X is finite, Algorithm 7.2 reduces to the algorithm of Sec-
tion 7.2 in Fill [11].

7.1 Realizable monotonicity

It is easy to see from (6.6) that if there exists a monotone transition rule, i.e.,
a transition rule φ with the property that

φ(x, u) ≤ φ(y, u) for every u whenever x ≤ y,(7.1)

then K is stochastically monotone according to Definition 7.1(c). We call this
stronger property realizable monotonicity . It is a common misbelief that, con-
versely, stochastic monotonicity for K implies realizable monotonicity. This myth
is annihilated by Fill and Machida [13] and Machida [30], even for the case of a
finite poset X , for which it is shown that every stochastically monotone kernel is
realizably monotone (i.e., admits a monotone transition rule) if and only if the
cover graph of X (i.e., its Hasse diagram regarded as an undirected graph) is
acyclic.

Nevertheless, realizable monotonicity can be used to motivate and explain
Algorithm 7.2. Indeed, suppose for the remainder of this subsection that K admits
a monotone transition rule φ as in (7.1). Then we proceed to build a bounding
process as in Section 5.2 and show how Algorithm 2.1 can be applied efficiently.
One immediately verifies by induction that

Ys(0̂) ≤ Ys(x) ≤ Ys(1̂) for all 0 ≤ s ≤ t and all x ∈ X .(7.2)

Thus Ds := [Ys(0̂),Ys(1̂)] = {y ∈ X : Ys(0̂) ≤ y ≤ Ys(1̂)} gives a bounding
process, and the pair (Ys(0̂),Ys(1̂)) is a quite concise representation of Ds. In

plain language, since monotonicity is preserved, when the chains ~Y(0̂) and ~Y(1̂)

have coalesced, so must have every ~Y(x).
But note also that, if we choose the initial state Xt to be 0̂, then {Yt(1̂) = 0̂} is

the coalescence event C. Algorithmically, it follows that if Xt = 0̂ is a legitimate
starting point for Algorithm 2.1 [as discussed near the end of Section 6.2, it
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is sufficient for this that π({0̂}) > 0], and if P(C) > 0, then L(X0|C) = π.

Informally put, we need only track the single upper-bound trajectory ~Y(1̂) in
the forward phase; if Yt(1̂) = 0̂, then the routine (correctly) accepts X0 as an
observation from π.

Notwithstanding the fundamental distinction between the two notions of mono-
tonicity, the routine of Algorithm 7.2 shares with its cousin from the realizably
monotone case the feature that, in the forward phase, the user need only check
whether a single K-trajectory started at 1̂ ends at 0̂.

Remark 7.4 (a) Lower and upper bounding processes can also be constructed
when Algorithm 2.1 is applied with a so-called “anti-monotone” transition rule;
we omit the details. See Häggström and Nelander [19], Huber [23], Kendall [26],
Møller [33], Møller and Schladitz [34], and Thönnes [42] for further discussion in
various specialized settings. There are at least two neat tricks associated with
anti-monotone rules. The first is that, by altering the natural partial order on X ,
such rules can be regarded, in certain bipartite-type settings, as monotone rules, in
which case the analysis of Section 7.3 (with 0̂ and 1̂ taken in the altered ordering,
of course) is available: consult Section 3 of [19], the paper [34], and Definition 5.1
in [42]. The second is that the poset X is allowed to be “upwardly unbounded”
and so need not have a 1̂: consult, again, [34] and [42].

(b) Dealing with monotone rules on partially ordered state spaces without 1̂ is
problematic and requires the use of “dominating processes.” We comment that a
dominating process provides a sort of random bounding process and is useful when
the state space is noncompact, but we shall not pursue these ideas any further
here. See Kendall [26] and Kendall and Møller [27] in the context of CFTP; we
hope to discuss the use of dominating processes for our algorithm in future work.

7.2 Rigorous description of Algorithm 7.2

Let K be an SM kernel with stationary distribution π and let K̃ be its time-
reversal, exactly as in the paragraph containing (6.5). Since we will not be using
a transition rule, we otherwise forsake the development in Sections 6.2–6.3 and
apply afresh the general framework of Section 6.1. For simplicity, we assume
π({0̂}) > 0; weaker conditions are possible for sufficiently regular chains—see
Machida [31].

Upward kernels: According to Theorem 1 of Kamae, Krengel, and O’Brien [25],
Definition 7.1(b) is equivalent to the existence of an upward kernel M [i.e., a
Markov kernel on X such that, for all x, M(x, ·) is supported on {y ∈ X : y ≥ x}]
satisfying ν2 = ν1M . Thus our assumption that K is SM implies the existence of
upward kernels Mxy, x ≤ y, such that

K(y, ·) =
∫
K(x, dx′)Mxy(x

′, ·) for all x ≤ y.(7.3)
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Choose and fix such kernels Mxy; we will assume further that Mxy(x
′, B) is jointly

measurable in (x, y, x′) ∈ X 3 for each B ∈ B.

The Markov chain and the first probability space: We consider a probability
space (Ω,A, P ) on which are defined a Markov chain ~X = (X0, . . . , Xt) satisfying

P (X0 ∈ dx0, . . . , Xt ∈ dxt) = π(dx0)K(x0, dx1)· · ·K(xt−1, dxt)

and another process ~Y = (Y0, . . . , Yt) such that

P (~Y ∈ d~y | ~X = ~x) = δ1̂(dy0)Mx0,1̂
(x1, dy1) · · · Mxt−1,yt−1(xt, dyt).(7.4)

Recalling the notational note at the end of Section 1, let

C := {Yt = 0̂}(7.5)

and observe that conditions (i)–(iv) and (v′) in Section 6.1 are satisfied by taking

(X ′,B′) = (X ,B), B′ = {0̂}(∈ B′), B′′ = {∅, B′},(7.6)

X = X0, X ′ = Xt, Y = Yt, C as at (7.5).

Condition (v′) follows from the independence of X0 and ~Y , which in turn can be
verified by a simple calculation using (7.4) and (7.3).

The second probability space and the algorithm: To set up the second prob-
ability space, we compute conditional probability distributions in stages, as in
Section 6.2. As there,

P (X0 ∈ dx0, . . . , Xt−1 ∈ dxt−1 |Xt = xt) = K̃(xt, dxt−1) · · · K̃(x1, dx0)

serves as a conditional distribution for (X0, . . . , Xt−1) given Xt = xt. Furthermore,

(7.4) gives a conditional distribution for ~Y given ~X.
We now see how to set up and simulate our second space. The user sets

Xt := 0̂, then draws an observation Xt−1 = xt−1 from K̃(xt, ·), then an observation

Xt−2 = xt−2 from K̃(xt−1, ·), etc. Next, having chosen ~X = ~x, the user draws an

observation ~Y = ~y from L(~Y | ~X = ~x). [In detail, this is done by setting Y0 := 1̂,
then drawing Y1 = y1 from Mx0,1̂

(x1, ·), then Y2 = y2 from Mx1,y1(x2, ·), etc.]

Finally, the user sets C := {Yt = 0̂}. With the definitions (7.6), this definition
of C, and

X = X0, X′ = Xt, D(0̂) = 1/π({0̂}),
assumptions (i)–(x) of Section 6.1 are verified in a straightforward manner. Ac-
cording to Corollary 6.6, if P(C) > 0, then L(X0|C) = π. Thus Algorithm 7.2
works as claimed.
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Remark 7.5 If the stronger assumption of realizable monotonicity holds, then Al-
gorithm 7.2 reduces to the specialization of Algorithm 2.1 discussed above. This
follows from the fact that one can then take

Mxy(x
′, ·) := P (φ(y, U1) ∈ · |φ(x, U1) = x′),(7.7)

for the upward kernels in (7.3), provided that RHS(7.7) is jointly measurable in
(x, y, x′).

7.3 Performance of Algorithm 7.2

Using condition (x), we see that the routine in Algorithm 7.2 has probability

P(C) =
P (C)

π({0̂}) =
Kt(1̂, {0̂})
π({0̂})(7.8)

of accepting the generated value X0. To understand this in another way, note that
our assumption π({0̂}) > 0 implies that K̃t(0̂, ·) ¿ π(·), and that the decreasing
function x 7→ Kt(x, {0̂})/π({0̂}) on X serves as the Radon–Nikodym derivative
(RND) x 7→ K̃t(0̂, dx)/π(dx). With this choice of RND, we have

P(C) = inf
x

K̃t(0̂, dx)

π(dx)
;

this last expression is a natural (though stringent) measure of agreement between
the distribution K̃t(0̂, ·) and the stationary distribution. In the discrete case, our
performance results reduce to results found in Sections 7–8 of Fill [11]; consult
that paper for further discussion.

7.4 An extension: stochastic cross-monotonicity

There is no reason that the chains ~X and ~Y in Algorithm 7.2 need have the
same kernel. Thus, consider two (possibly different) kernels K and L satisfying
the stochastic cross-monotonicity (or cross-SM) property

K(x, ·) ¹ L(y, ·) whenever x ≤ y;

if K = L, this reduces to the Definition 7.1(c) of SM. We can then run Algo-
rithm 7.2, replacing “with Y0 = 1̂ and kernel K” by “with Y0 = 1̂ and kernel L.”
The rigorous description of this algorithm is left to the reader. The analogue
of (7.3) is of course

L(y, ·) =
∫
K(x, dx′)Mxy(x

′, ·) for all x ≤ y;(7.9)
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and if we have cross-monotone transition rules φK and φL [according to the ap-
propriate generalization of (7.1)], then one can take

Mxy(x
′, ·) := P (φL(y, U1) ∈ · |φK(x, U1) = x′).(7.10)

In the cross-SM case, we have the extension

P(C) =
P (C)

π({0̂}) =
Lt(1̂, {0̂})
π({0̂})

of (7.8).
One application of the cross-SM case which may arise in practice (Machida

plans to employ the following idea in a future application of our algorithm to
the mixture problems considered by Hobert et al. [21]) is that of stochastic domi-
nance [K(x, ·) ¹ L(x, ·) for all x ∈ X ] by an SM kernel L; indeed, then K(x, ·) ¹
L(x, ·) ¹ L(y, ·) whenever x ≤ y. Suppose further that L has stationary distribu-
tion σ with σ({0̂}) > 0; then, with ρ := σ({0̂})/π({0̂}),

P(C) = inf
y

Lt(y, {0̂})
π({0̂}) = ρ inf

y

L̃t({0̂}, dy)

σ(dy)
,(7.11)

using the decreasing function y 7→ Lt(y, {0̂})/σ({0̂}) as the choice of RND y 7→
L̃t({0̂}, dy)/σ(dy).

The practical implication (say, for finite-state problems, as we shall assume for
ease of discussion for the remainder of this section) is that if the user is unable to
find a rapidly mixing SM kernel K with stationary distribution π (the distribution
of interest) but can find a rapidly mixing stochastically dominant SM kernel L with
stationary distribution σ “not too much larger than π” (at {0̂}), then our cross-
SM algorithm can be applied efficiently, provided the imputation of U1 inherent
in (7.10) can be done efficiently.

To temper enthusiasm, however, we note that the limit (namely, ρ) as t→∞
of the acceptance probability (7.11) can often be achieved in simpler fashion.
Suppose, for example, that simulation from σ is easy, that x 7→ π({x}) and
x 7→ σ({x}) can be computed exactly except for normalizing constants, and that
x = 0̂ minimizes the ratio σ({x})/π({x}). Then one can employ elementary
rejection sampling to simulate from π, with acceptance probability ρ.

8 Relation to CFTP

8.1 Comparison

How does our extension of Fill’s algorithm, as given by Algorithm 2.1, compare
to CFTP? As we see it, our algorithm has two main advantages and one main
disadvantage.



          

23

Advantages: As discussed in Section 1 and Remark 6.9(b) and in [11], a primary
advantage of our Algorithms 2.1 and 3.1 is interruptibility. A related second
advantage of Algorithm 2.1 concerns memory allocation. Suppose, for example,
that our state space X is finite and that each time-step of Algorithm 2.1, including
the necessary imputation (recall Section 6.3), can be carried out using a bounded
amount of memory. Then, for fixed t, our algorithm can be carried out using
a fixed finite amount of memory. Unfortunately, it is rare in practice that the
kernel K employed is sufficiently well analyzed that one knows in advance a value
of t (and a value of the seed Xt) giving a reasonably large probability P(C) of
acceptance. Furthermore, the fixed amount of memory needed is in practice larger
than the typical amount of memory allocated dynamically in a run of CFTP. See
also the discussion of read-once CFTP in Section 8.2.

Disadvantage: A major disadvantage of our algorithms concerns computational
complexity. We refer the reader to [11] and [12] for a more detailed discussion in
the setting of realizable monotonicity (and, more generally, of stochastic mono-
tonicity). Briefly, if no attention is paid to memory usage, our algorithms have
running time competitive with CFTP: cf. Remark 6.9(c), and also the discussion
in Remark 9.3(e) of [11] that the running time of our Algorithm 2.1 is, in a certain
sense, best possible in the stochastically monotone setting. However, this analy-
sis assumes that running time is measured in Markov chain steps; unfortunately,
time-reversed steps can sometimes take longer than do forward steps to execute
(e.g., [12]), and the imputation described in Section 6.3 is sometimes difficult to
carry out. Moreover, the memory usage for naive implementation of our algo-
rithm can be exorbitant; how to trade off speed for reduction in storage needs is
described in [11].

8.2 Connection with CFTP

There is a simple connection between CFTP and our Algorithm 3.1. Indeed,
suppose we carry out the usual CFTP algorithm to sample from π, using kernel K,
transition rule φ, and driving variables ~U = (U0,U−1, . . .). Let T denote the
backwards coalescence time and let X0 ∼ π denote the terminal state output by
CFTP. Let W ∼ π independent of ~U, and follow the trajectory from X−T := W
to X0; call this trajectory ~X = (X−T, . . . ,X0). Since X0 is determined solely

by ~U, the random variables W and X0 are independent.
When π̂ = π in Algorithm 3.1, the algorithm simply constructs the same

probability space as for CFTP, but with the ingredients generated in a different
chronological order: first X0,X−1, . . .; then ~U (which determines T); then W :=
X−T. Again X0 ∼ π and W ∼ π are independent.

Note that a fundamental difference between Algorithm 3.1 and CFTP is in
what values they report. CFTP reports X0 as its observation from π, while



            

24

Algorithm 3.1 reports the value W = X−T.

Remark 8.1 (a) Because of this statistical independence, it does not matter in
Algorithm 3.1 that we actually use X0 ∼ π̂ 6= π.

(b) The fact (1) that W, unlike X0, is independent of ~U, together with (2) that

T depends solely on ~U, explains why our algorithm is interruptible and CFTP is
not.

(c) In a single run of CFTP, the user would of course be unable to choose
W ∼ π as above, just as in a single run of Algorithm 3.1 we do not actually
choose X0 ∼ π. So one might regard our described connection between the two
algorithms as a bit metaphorical. But see Section 9.2.

Read-once CFTP: We note also that our Algorithm 2.1 bears close resemblance
to the read-once CFTP algorithm of Wilson [45]. Indeed, that algorithm shares
with ours the property of requiring only a bounded amount of memory. Further-
more, in the execution of Algorithm 2.1, consider relabeling time as follows. At
the kth attempt at coalescence (k = 1, 2, . . .), consider X−(k−1)t, . . . ,X−kt in place
of Xt, . . . ,X0, respectively, where now X−kt plays two roles: the candidate for
output in attempt k and the starting state in attempt k+ 1. Then Algorithm 2.1
will output X−kt if and only if coalescence occurs in attempt k. Read-once CFTP,
on the other hand, runs chains forwards in time from time 0, outputting Xkt if
and only if coalescence occurs beginning at time kt and ending at time (k + 1)t
and has also occurred on some earlier such interval. Thus, in some sense, the
two algorithms are mirrors of one another. However, the read-once algorithm is
not interruptible, because its output (which necessarily follows a previous coales-
cence), conditional on rapid termination, is biased towards values resulting from
fast first coalescence. By contrast, the output of Algorithm 2.1 does not require
computation of a previous coalescence.

9 Perfect samples of arbitrary size

Thus far in this paper we have considered only the problem of obtaining a
single observation from the distribution π of interest. What can be done to obtain
a perfect sample of size n?

9.1 Elementary options

As discussed in Section 3 of Fill [11] and in Murdoch and Rosenthal [36],
the simplest option is to apply, repeatedly and independently, an algorithm pro-
ducing a perfect sample of size 1. When the size-1 algorithm employed is inter-
ruptible (e.g., Algorithm 2.1 or Algorithm 3.1), the resulting size-n algorithm is
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both observationwise interruptible [in the sense that, for k = 1, . . . , n, the kth
observation output, say Wk, and the number of Markov chain steps required,
say Tk, are conditionally independent given all randomness used in the genera-
tion of W1, . . . ,Wk−1] and totally interruptible [in the sense that T+ :=

∑n
k=1 Tk

and ~W := (W1, . . . ,Wn) are independent]. A related observation is that the
conditional distribution of a fixed-duration sample given its size is that of an i.i.d.
sample, again provided that time is measured in Markov chain steps; contrast
comment 3 concerning CFTP in Remark 5.3 of [11].

Another simple option is to generate a single observation, say W1, from a size-1
perfect sampler and then run the chainK (or K̃, or any other chain with stationary

distribution π) for n − 1 steps from W1, obtaining ~W = (W1, . . . ,Wn). Note
that each observation Wk is marginally distributed as π. This size-n algorithm is
also observationwise interruptible and totally interruptible. Of course, statistical
use of ~W is complicated by the serial dependence of its entries.

A third option is to compromise between the first two ideas and generate
ν independent vectors ~W(1), . . . , ~W(ν), where ~W(i) is obtained using the size-ti
sampler described in the preceding paragraph and ν and (t1, . . . , tν) are chosen
(in advance, deterministically) so that t1 + · · ·+ tν = n. Again we have both forms
of interruptibility. This third option is an interruptible analogue of the “RCFTP
(Repeated CFTP) tours” of Murdoch and Rosenthal [36].

9.2 Efficient use of size-1 perfect samplers

All three of the options in Section 9.1 seem wasteful. After all, a great deal of
randomness and computational effort goes into the use of Algorithm 2.1 or 3.1, yet
only a single observation from π comes out. Is there a way to be more efficient?
Our short answer is this: Yes, but only for Algorithm 3.1, and then the advan-
tage of interruptibility is forfeited. The remainder of this subsection provides an
explanation.

Using Algorithm 2.1: Suppose that we have in hand an observation W1 ∼ π,
for example from a first run of Algorithm 2.1. If we feed W1 into the routine
of Algorithm 2.1 as Xt, then the resulting ~X is unconditionally distributed as a
stationary trajectory from K; in particular, Xs ∼ π for 0 ≤ s ≤ t. Unfortunately,
this is not generally true conditionally given success (i.e., given coalescence):

Example 9.1 Consider again the toy random-walk example of Section 4, again
with t = 2 but now with the modifications

k(0, 0) = k(2, 2) = 3/4, k(0, 1) = k(2, 1) = 1/4, k(1, 0) = k(1, 2) = 1/2,

k(0, 2) = k(1, 1) = k(2, 0) = 0

and π = (2/5, 1/5, 2/5) to K and π. Suppose that the seed value X2 is chosen
according to π, and that the independent-transitions rule is used. Then of course
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L(X0|C) = π, but one can check that L(X1|C) = (7/22, 8/22, 7/22) and that
L(X2|C) = (4/11, 3/11, 4/11).

This example illustrates a rather catastrophic fact about Algorithm 2.1: If
we use the output W2 := X0 as an observation from π, we may no longer use
W1 = Xt as such. We know of no systematic way to make use of the auxiliary
randomness generated in a run of Algorithm 2.1.

Using Algorithm 3.1: Let Algorithm 3.1′ denote Algorithm 3.1 modified as
follows. For fixed t0, use T′ := max(T, t0 − 1) in place of T. Algorithm 3.1′ uses
a conservative detection rule (see section 5), and so is still valid.

Suppose again that we have in hand an observation distributed as π, say from
a first run of Algorithm 3.1′ or 3.1 or 2.1. If we call this observation W

(1)
t0 and feed

it into Algorithm 3.1′ as X0, then the resulting trajectory (. . . ,X−2,X−1,X0) is
distributed as a stationary trajectory from K; in particular,

~W(1) = (W
(1)
1 , . . . ,W

(1)
t0 ) := (X−(t0−1), . . . ,X0)

is a stationary trajectory of length t0 from K. Defining W
(2)
t0 := X−T, we now

feed W
(2)
t0 into Algorithm 3.1′ as the new seed X0; using randomness otherwise

independent of the first run, we obtain another stationary trajectory, call it ~W(2),
of length t0 from K. Taking W

(3)
t0 to be the value of X−T from this second run,

we then provide W
(3)
t0 as a seed producing ~W(3), and so on.

It is not hard to see that, for any ν ≥ 1, the joint distribution of the “tours”
(as Murdoch and Rosenthal [36] call them) ~W(ν), . . . , ~W(2), ~W(1) is the same as
the joint distribution of ν serially generated “Guarantee Time CFTP” (GTCFTP)
tours as in Section 5 of [36]. (Their “guarantee time” Tg is our t0− 1.) Since each

tour ~W(i) has the marginal distribution

P( ~W(i) ∈ d~w) = π(dw1)K(w1, dw2) · · · K(wt0−1, dwt0)(9.1)

and since both ( ~W(1), ~W(2), . . . , ~W(ν)) and the sequence of GTCFTP tours are
clearly tour-valued Markov chains, we see that our tour-chain is simply the sta-
tionary time-reversal of the (stationary) GTCFTP tour-chain, where the common
stationary tour-distribution is (9.1).

Since GTCFTP tours are analyzed by Murdoch and Rosenthal [36], we refer
the interested reader to [36] for further discussion and analysis. One highlight is

that while the tours ~W(1), ~W(2), . . . are not independent, they are 1-dependent:
that is, ~W(i) and ( ~W(1), ~W(2), . . . , ~W(i−2), ~W(i+2), ~W(i+3), . . .) are independent for
every i.

Remark 9.2 For t0 = 1, one can check that the tour-algorithm we have described is
an observationwise interruptible and totally interruptible algorithm for producing
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independent observations from π. Unfortunately, for t0 ≥ 2, one can check that
all interruptibility is lost, due to the dependence of (X−(t0−1), . . . ,X−1) and X−T
(unlike the independence of X0 and X−T ) in Algorithm 3.1′.

In light of the above remark, and the fact that CFTP tours are generated
considerably more easily than are our Algorithm 3.1′ tours, we see nothing to
recommend the use of Algorithm 3.1′ in practice. (We remark, nonetheless, that
it was in investigating our tours that we discovered the connection between Algo-
rithm 3.1 and CFTP described in Section 8.2.)
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