
DESTRUCTION OF VERY SIMPLE TREES
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Abstract. We consider the total cost of cutting down a random rooted tree
chosen from a family of so-called very simple trees (which include ordered trees,
d-ary trees, and Cayley trees); these form a subfamily of simply generated
trees. At each stage of the process an edge is chose at random from the tree
and cut, separating the tree into two components. In the one-sided variant
of the process the component not containing the root is discarded, whereas in
the two-sided variant both components are kept. The process ends when no
edges remain for cutting. The cost of cutting an edge from a tree of size n
is assumed to be nα. Using singularity analysis and the method of moments,
we derive the limiting distribution of the total cost accrued in both variants
of this process. A salient feature of the limiting distributions obtained (after
normalizing in a family-specific manner) is that they only depend on α.

1. Introduction

Consider the following process on a rooted tree with n vertices. Pick an edge
uniformly at random and “cut” it, separating the tree into a pair of rooted trees;
the tree containing the root of the original tree retains its root while the tree not
containing the root of the original tree is rooted at the vertex adjacent to the edge
that was cut. In the one-sided variant of the problem the tree not containing the
original root is discarded and the process is continued recursively until the original
root is isolated. In the two-sided variant the process is continued recursively on
each of the rooted trees. Assume that the cost incurred for selecting an edge and
splitting the tree is tn. In this paper we derive the limiting distribution of the total
cost accrued when the tree is a random very simple tree (defined below) and tn = nα

for fixed α ≥ 0, for both the two-sided variant (Theorems 4.4, 4.6,and 4.7) and the
one-sided variant (Theorem 5.1). A salient feature of the limiting distributions
obtained (after normalizing in a family-specific manner) is that they only depend
on α.

In the one-sided variant, the case tn ≡ 1 (i.e., α = 0) corresponds to the num-
ber of cuts required to disconnect the tree. For this random variable, Meir and

Date: August 4, 2005.
2000 Mathematics Subject Classification. Primary: 68W40; Secondary: 60F05, 60C05.
Key words and phrases. Cutting, Hadamard products, limit laws, method of moments, random

spanning tree model, simply generated trees, singularity analysis, Union–Find.
The research of James Allen Fill was supported by NSF Grants DMS–0104167 and DMS–

0406104, and by The Johns Hopkins University’s Acheson J. Duncan Fund for the Advancement
of Research in Statistics. Nevin Kapur’s research was supported by NSF grant 0049092 and the
Center for Mathematics of Information at the California Institute of Technology.

1



2 JAMES ALLEN FILL, NEVIN KAPUR, AND ALOIS PANHOLZER

Moon [13] derived the mean and variance for Cayley trees; Chassaing and Mar-
chand [2] derived the limiting distribution for Cayley trees. Panholzer obtained lim-
iting distributions for non-crossing trees [16] and very simple families of trees [15].
Recently Janson extended these results to all simply generated families [10].

The interest in the two-sided variant stems from the fact that when the very
simple family is Cayley trees, the process is equivalent to a probabilistic model
(the “random spanning tree model”) involved in the Union–Find (or equivalence-
finding) algorithm. Knuth and Schönhage [12] derived the expected value of the
cost in the cases (among others) tn ∼ a

√
n and tn = n/2. These results were later

extended [11] to the cases tn = nα when α > 1/2 and tn = O(nα) when α < 1/2.
(Some of these expected values were rederived using singularity analysis in [4].)
In [3], Chassaing and Marchand derive limit laws for the costs considered by Knuth
and Schönhage.

We treat both variants of the destruction process using singularity analysis [8],
a complex-analytic technique that relates asymptotics of sequences to singularities
of their generating functions. We rely on applicability of singularity analysis to the
Hadamard product (the term-by-term product) of sequences [4] and the amenability
of the generalized polylogarithm to singularity analysis [7].

The organization of the paper is as follows. In Section 2 we define families
of very simple trees, noting the key “randomness-preservation” property that is
crucial for the application of our methods. Section 3 establishes notation and other
preliminaries that will be used in the subsequent proofs. In Section 4 the two-sided
variant is considered, and Section 5 deals with the one-sided variant.

Notation. In the sequel we will use ln to denote natural logarithms and log when
the base of the logarithm does not matter.

2. Very simple trees

An ordered tree is a rooted tree in which the order of the subtrees of each given
node is relevant. Given a sequence (φi)i≥0 of nonnegative numbers (called a degree
generating sequence) with φ0 = 1, a simply generated family F of trees is obtained
by assigning each ordered tree T the weight

w(T ) :=
∏
v∈T

φd(v),

where d(v) is the outdegree of the node v. Let Fn denote the set of trees in F
with n nodes, and let Tn denote the weighted number of trees in Fn, i.e.,

Tn :=
∑

T∈Fn

w(T ).

A random simply generated tree of size n is obtained by assigning probabil-
ity w(T )/Tn to the tree T ∈ Fn. Many combinatorially interesting families such as
(unweighted) ordered trees, Cayley trees, Motzkin trees, and d-ary trees are simply
generated. It is also well known that simply generated trees correspond to certain
conditioned Galton–Watson trees; see the introductory section of [10] for the pre-
cise connection. It is well-known that the generating function T (z) :=

∑
n≥1 Tnzn

satisfies the functional equation

T (z) = zΦ(T (z)),
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where Φ(t) :=
∑

k≥0 φktk is the degree generating function of the family. For
further background on simply generated trees we refer the reader to [14].

In this paper we consider the subclass of simply generated families, called very
simple families, that, among simply generated families, are characterized by the
following property.

Choose a random simply generated tree from the family Fn and then one
of its n− 1 edges uniformly at random. Cutting this edge produces a pair
of trees of size k (the one that contains the root) and n − k, as described
in Section 1. Then the subtrees themselves are random simply generated
trees from the family Fk and Fn−k.

It is clear that the “randomness-preservation” property of very simple trees al-
lows a simple recursive formulation [see (3.1) and (3.12)] of the total cost of de-
stroying such a tree.

Panholzer [15, Lemma 1] characterized the degree generating functions of very
simple trees; the relevant constraints are summarized in Table 1.

2.1. Singular expansions. As is usual for treatment of simply generated families,
let τ denote the unique root of tΦ′(t) = Φ(t) with 0 < t < R, where R is the radius
of convergence of the series Φ. Let ρ := τ/Φ(τ). Let Z := 1−ρ−1z, and let A denote
a generic power series in Z, possibly different at each occurrence. Then as z → ρ,
the dominant singularity for T (z), a singular expansion for T is [9, Theorem VII.2]

(2.1) T (z) ∼ τ − bρ1/2Z1/2 + ZA+ Z3/2A,

where b := Φ(τ)
√

2
τΦ′′(τ) . immediately from singularity analysis that

(2.2) Tn ∼ cρ−nn−3/2(1 + n−1N ),

where c := bρ1/2/(2
√

π) = [Φ(τ)/2πΦ′′(τ)]1/2. In the sequel we will also use

(2.3) σ2 := τ2 Φ′′(τ)
Φ(τ)

.

Differentiating the expansion (2.1) term-by-term [4, Theorem 6] we get

T ′(z) ∼ b

2
ρ−1/2Z−1/2 +A+ Z1/2A.

Since z = ρ− ρZ,

(2.4) zT ′(z) ∼ b

2
ρ1/2Z−1/2 +A+ Z1/2A.

The constants a0 and a1 described by Table 1 are fundamental constants for our
analysis; see especially (3.2). Using (2.1) and (2.4) we get

(2.5) 1 + 2a0T (z) + a1zT ′(z) ∼ a1ρ
1/2 b

2
Z−1/2 +A+ Z1/2A

and
1− a1T (z) ∼ (1− a1τ) + a1bρ

1/2Z1/2 + ZA+ Z3/2A.

It is easily verified that for each very simple family 1−a1τ = 0 (this fact will be used
numerous times in subsequent calculations), so that the constant term vanishes in
the singular expansion of 1− a1T (z). This leads to

z[1− a1T (z)] ∼ ρ3/2a1bZ
1/2 + ZA+ Z3/2A
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and consequently

(2.6) z−1[1− a1T (z)]−1 ∼ ρ−3/2a−1
1 b−1Z−1/2 +A+ Z1/2A.

We will also need

(2.7)
1

T (z)
∼ τ−1 +

bρ1/2

τ2
Z1/2 + ZA+ Z3/2A,

which follows from (2.1).

3. Preliminaries

Throughout, L= denotes equality in law (or distribution) and L−→ denotes con-
vergence in law. Recall that the Hadamard product of two power series f and g,
denoted by f � g, is the power series defined by

(f � g)(z) ≡ f(z)� g(z) :=
∑

n

fngnzn,

where
f(z) =

∑
n

fnzn and g(z) =
∑

n

gnzn.

3.1. Two-sided destruction. The cost of cutting down a very simple tree of
size n, call it Xn, satisfies the distributional recurrence

(3.1) Xn
L= XKn + X∗

n−Kn
+ tn, n ≥ 2; X1 = t1,

where tn, for n ≥ 2, is the toll for cutting an edge from a tree of size n. Here Kn,
the (random) size of the tree containing the root, is independent of (Xj)j≥1 and
(X∗

j )j≥1, which are independent copies of each other. The splitting probabilities are
given by

(3.2) Pr[Kn = k] =: pn,k = (a1k + a0)
TkTn−k

(n− 1)Tn
, k = 1, . . . , n− 1.

Table 1 gives the constants a1 and a0 for each type of very simple family; see (14)–
(16) in [15]. Here αi := φi+1/φi, i = 0, 1, where (φi)i≥0 is the degree generating
sequence of the simply generated tree. It is easy to check that family A is Cayley

Family Generating function Constraints a1 a0

A eα0t α0 0
B (1 + α0t

d )d d ≥ 2 α0
d−1

d
α0
d

C [1− (2α1 − α0)t]
− α0

2α1−α0 2α1 − α0 > 0 2α1 −(2α1 − α0)

Table 1. Generating functions for very simple families. For each
family, α0 > 0 is also a constraint.

trees, family B is d-ary trees, and family C contains unweighted ordered trees. (As
it turns out, the distributional recurrence for Cayley trees is identical to the one
obtained for the Union–Find process studied in [12, 11, 4]—see Remark 4.3 below.)
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Define µ
[s]
n := EXs

n. Taking sth powers of both sides of (3.1) and taking expec-
tations by conditioning on Kn, we get

(3.3) µ[s]
n =

n−1∑
k=1

pn,k(µ[s]
k + µ

[s]
n−k) + r[s]

n , n ≥ 2,

where

(3.4) r[s]
n :=

∑
s1+s2+s3=s

s2,s3<s

(
s

s1, s2, s3

)
ts1
n

n−1∑
k=1

pn,kµ
[s2]
k µ

[s3]
n−k,

and µ
[s]
1 = ts1. Define generating functions

µ[s](z) :=
∑
n≥1

µ[s]
n Tnzn, t(z) :=

∑
n≥1

tnzn, T (z) :=
∑
n≥1

Tnzn.

[Observe that µ[0](z) = T (z).] Multiply (3.3) by (n− 1)Tnzn and sum over n ≥ 2.
The resulting left side is∑

n≥2

(n− 1)Tnµ[s]
n zn =

∑
n≥1

(n− 1)Tnµ[s]
n zn = z∂zµ

[s](z)− µ[s](z),

where ∂z denotes derivative with respect to z. Similarly, the resulting first term on
the right side is

a1

[
z

(
∂zµ

[s](z)
)

T (z) + zT ′(z)µ[s](z)
]

+ 2a0µ
[s](z)T (z).

The resulting second term on the right side is

r[s](z) :=
∑
n≥2

(n− 1)Tnr[s]
n zn =

∑
n≥1

(n− 1)Tnr[s]
n zn

=
∑

s1+s2+s3=s
s2,s3<s

(
s

s1, s2, s3

)
t�s1(z)�

[
a1z

(
∂zµ

[s2](z)
)

µ[s3](z) + a0µ
[s2](z)µ[s3](z)

]
.

(3.5)

Thus (3.3) translates to

z∂zµ
[s](z)− µ[s](z)

= a1

[
z

(
∂zµ

[s](z)
)

T (z) + zT ′(z)µ[s](z)
]

+ 2a0µ
[s](z)T (z) + r[s](z),

i.e.,

(3.6) ∂zµ
[s](z) + p(z)µ[s](z) = g[s](z),

where

(3.7) p(z) := −1 + 2a0T (z) + a1zT ′(z)
z[1− a1T (z)]

and

(3.8) g[s](z) :=
r[s](z)

z[1− a1T (z)]
,
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with µ[s](0) = 0. By variation of parameters (see, for example, [1, 2.1-(22) and Prob-
lem 2.1.21], the general solution to the first-order linear differential equation (3.6)
is given by

(3.9) µ[s](z) = A[s](z) exp
[
−

∫ z

z0

p(t) dt

]
,

where

(3.10) A[s](z) :=
∫ z

0

g[s](t) exp
[∫ t

z0

p(u) du

]
dt + βs,

with z0 chosen as follows and βs an arbitrary constant.
The integrand p(z) defined at (3.7) and appearing in (3.9)–(3.10) is asymp-

totic to −1/z as z → 0 and has [see (4.1) below] another singularity at z = ρ.
In (3.9)–(3.10) we may choose (and fix) z0 arbitrarily from the punctured disc of
radius ρ centered at the origin. Then, in (3.10), as t → 0 we have

exp
[∫ t

z0

p(u) dt

]
= exp

[∫ t

z0

(
− 1

u

)
du +

∫ t

z0

[
p(u) +

1
u

]
du

]
= exp

[
− ln t + ln z0 +

∫ t

z0

[
p(u) +

1
u

]
du

]
∼ z0e

at−1, where a :=
∫ 0

z0

[
p(u) +

1
u

]
du,

whereas, using (3.8) and (3.5),

g[s](t) ∼ r[s](t)
t

∼ T2r
[s]
2 t;

thus the integrand in (3.10) has no singularity at t = 0.
Now we obtain the particular solution of interest, using the boundary condition

µ[s](z) ∼ ts1T1z as z → 0. We find the constant βs is specified in terms of z0 as

(3.11) βs = z0e
ats1T1.

Remark 3.1. One can check for each very simple family that

Φ′(t) =
a0 + a1

1 + a0t
Φ(t),

and for any simply generated family that

T ′(z) =
Φ(T (z))

1− Φ′(T (z))T (z)
Φ(T (z))

.

Thus

p(z) = − Φ(T (z))
T (z)[1− a1T (z)]

1 + 2a0T (z) +
a1T (z)

1− (a0+a1)T (z)
1+a0T (z)

 .
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This leads to∫ z

z0

p(t) dt = −
∫ T (z)

T (z0)

1
T (1− a1T )

[
1 + 2a0T +

a1T

1− (a0+a1)T
1+a0T

] [
1− (a0 + a1)T

1 + a0T

]
dT

= −
∫ T (z)

T (z0)

( 1
T

+
a0

1 + a0T
+

a1

1− a1T

)
dT

= ln
[

1− a1T (z)
T (z)(1 + a0T (z))

]
− ln

[
1− a1T (z0)

T (z0)(1 + a0T (z0))

]
and finally, again using the boundary conditions on µ[s](z) as z → 0, to the following
explicit form of (3.9):

µ[s](z) =
T (z)[1 + a0T (z)]

1− a1T (z)

{∫ z

0

g[s](t)
1− a1T (t)

T (t)[1 + a0T (t)]
dt + ts1

}
.

3.2. One-sided destruction. Here, the cost of cutting down a very simple tree
of size n, call it Yn, satisfies the distributional recurrence

(3.12) Yn
L= YKn + tn, n ≥ 2; Y1 = t1,

where tn, for n ≥ 2, is the toll for cutting an edge from a tree of size n and the
splitting probabilities are given by pn,k at (3.2).

Defining µ
[s]
n := EY s

n , one obtains from equation (3.12) by conditioning on Kn

the recurrence relation

(3.13) µ[s]
n =

n−1∑
k=1

pn,kµ
[s]
k + r[s]

n , n ≥ 2,

where

r[s]
n :=

∑
s1+s2=s,

s2<s

(
s

s1

)
ts1
n

n−1∑
k=1

pn,kµ
[s2]
k ,

and µ
[s]
1 = ts1. Using the same notation as in Section 3.1, we obtain the following

differential equation by multiplying (3.13) by (n−1)Tnzn and summing over n ≥ 2:

z∂zµ
[s](z)− µ[s](z) = T (z)

(
a1z∂zµ

[s](z) + a0µ
[s](z)

)
+ r[s](z),

where

(3.14) r[s](z) :=
∑

s1+s2=s,
s2<s

(
s

s1

)
t�s1(z)�

[
T (z)

(
a1z∂zµ

[s2](z) + a0µ
[s2](z)

)]
.

This can be written as

(3.15) ∂zµ
[s](z) + p(z)µ[s](z) = g[s](z),

with

(3.16) p(z) := − 1 + a0T (z)
z[1− a1T (z)]

and g[s](z) :=
r[s](z)

z[1− a1T (z)]
.

One can check that for each very simple family, p(z) = −∂z ln(T (z)), so that we
obtain as general solution of the first order linear differential equation (3.15):

µ[s](z) = T (z)
∫ z

0

g[s](t)
T (t)

dt + C T (z),



8 JAMES ALLEN FILL, NEVIN KAPUR, AND ALOIS PANHOLZER

and finally by adapting to the initial condition ∂zµ
[s](z)

∣∣
z=0

= T1µ
[s]
1 = T1t

s
1, that

the integration constant is given as C = ts1. Therefore, we get

(3.17) µ[s](z) = T (z)
∫ z

0

g[s](t)
T (t)

dt + ts1T (z).

4. Two-sided destruction

We begin by obtaining a singular expansion for p(z) at (3.7). Using (2.5)
and (2.6) in (3.7) we get

(4.1) p(z) ∼ −ρ−1

2
Z−1 + Z−1/2A+A.

Integrating this singular expansion term-by-term [4, Theorem 7],∫ z

z0

p(t) dt ∼ −1
2

lnZ−1 +A+ Z1/2A.

Thus

(4.2) exp
[
−

∫ z

z0

p(t) dt

]
∼ ξZ−1/2 +A+ Z1/2A,

where

(4.3) ξ := (1− ρ−1z0)1/2 exp
[
−

∫ ρ

z0

[
p(t) +

ρ−1

2
(1− ρ−1t)−1

]
dt

]
.

Taking the reciprocal of (4.2) gives

(4.4) exp
[∫ z

z0

p(t) dt

]
∼ ξ−1Z1/2 + ZA+ Z3/2A.

Let us now consider two-sided destruction with the toll tn = nα, with α > 0.
(Notice that the case α = 0 is trivial since then the total cost of destruction is simply
the number of edges in the tree, which is always n−1.) The toll generating function
t(z) is the generalized polylogarithm Li−α,0(z), which is amenable to singularity
analysis [7, Theorem 1].

4.1. Expectation. Now we obtain a singular expansion for r[1](z) defined at (3.5),
recalling that µ[0](z) = T (z):

(4.5) r[1](z) = t(z)� [a1zT ′(z)T (z) + a0T
2(z)].

Using (2.1) we conclude that

T 2(z) ∼ A+ Z1/2A,

and using (2.4) that

(4.6) a1zT ′(z)T (z) + a0T
2(z) ∼ ρ1/2 b

2
Z−1/2 +A+ Z1/2A.

We will use the Zigzag algorithm of [4] to obtain a singular expansion for r[1](z).
We recall the use of the notation N to denote a generic power series in 1/n, possibly
different at each occurrence. By singularity analysis,

(4.7) ρn[zn][a1zT ′(z)T (z) + a0T
2(z)] ∼ ρ1/2 b

2
n−1/2

√
π

+ n−3/2N .
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Thus

(4.8) ρn[zn]r[1](z) ∼ ρ1/2 b

2
nα− 1

2

√
π

+ nα− 3
2N .

Until further notice, suppose α 6∈ { 1
2 , 3

2 , . . .}. Then a compatible singular expan-
sion for r[1](z) at (4.5) is obtained as

(4.9) r[1](z) ∼ ρ1/2b
Γ(α + 1

2 )
2
√

π
Z−α− 1

2 + Z−α+ 1
2A+A.

Recalling (3.8) and (2.6) we have

(4.10) g[1](z) ∼ τ

ρ

Γ(α + 1
2 )

2
√

π
Z−α−1 + Z−α− 1

2A+ Z−αA+ Z−1/2A+A.

Using this expansion and (4.4),

g[1](z) exp
[∫ z

z0

p(t) dt

]
∼ τ

ξρ

Γ(α + 1
2 )

2
√

π
Z−α− 1

2 + Z−αA+ Z−α+ 1
2A+A+ Z1/2A.

By (3.10) and Theorem 7 of [4], we may integrate this expansion term-by-term to
get a complete singular expansion for A. If α 6∈ {1, 2, . . . }, we have

A[1](z) ∼ τ

ξ

Γ(α− 1
2 )

2
√

π
Z−α+ 1

2 + L0 + Z−α+1A+ Z−α+ 3
2A+ ZA+ Z3/2A,

where L0 is a constant. [The value of L0 is immaterial unless 0 < α < 1/2, in which
case see (4.14).] On the other hand, if α ∈ {1, 2, . . . }, a logarithmic term appears
upon integration, so that

A[1](z) ∼ τ

ξ

Γ(α− 1
2 )

2
√

π
Z−α+ 1

2 + Z−α+1A+ Z−α+ 3
2A+ K0 lnZ−1,

where K0 is a constant. Combining these expansions with (4.2), we finally obtain
[recalling (3.9)]

(4.11) µ[1](z) ∼ τ
Γ(α− 1

2 )
2
√

π
Z−α + L0ξZ

−1/2 + Z−α+ 1
2A+ Z−α+1A+A+ Z1/2A

when α 6∈ {1, 2, . . . } and
(4.12)

µ[1](z) ∼ τ
Γ(α− 1

2 )
2
√

π
Z−α + Z−α+ 1

2A+ Z−α+1A+ Z−1/2(lnZ−1)A+ (lnZ−1)A

when α ∈ {1, 2, . . . }. Note that the remainder in (4.12) is O(|Z|−α+ 1
2 ) unless α = 1,

in which case it is O(|Z|− 1
2 lnZ−1) = O(|Z|− 1

2−ε) for any ε > 0.
When α > 1/2 and α 6∈ {1, 2, . . . }, by singularity analysis we have

ρnµ[1]
n Tn ∼ τ

Γ(α− 1
2 )

2
√

πΓ(α)
nα−1 + nα− 3

2N + nα−2N + n−1/2N ,

so that, recalling (2.2) and (2.3),

µ[1]
n ∼ σ

Γ(α− 1
2 )

√
2Γ(α)

nα+ 1
2 + nαN + nα− 1

2N + nN .
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When α ∈ {1, 2, . . . }, starting from (4.12) and the note following that display, we
can similarly derive the expansion

µ[1]
n = σ

Γ(α− 1
2 )

√
2Γ(α)

nα+ 1
2 + O(nα) + O(n log n).

When 0 < α < 1/2, a similar computation yields

(4.13) µ[1]
n ∼ L0ξ

c
√

π
n + σ

Γ(α− 1
2 )

√
2Γ(α)

nα+ 1
2 + nαN + nα− 1

2N +N ,

where

(4.14) L0 :=
∫ ρ

0

g[1](t) exp
[∫ t

z0

p(u) du

]
dt + β1,

with p and g[1] defined at (3.7) and (3.8), respectively, and ξ and β1 at (4.3)
and (3.11), respectively.

When α ∈ { 3
2 , 5

2 , . . . }, one can check that logarithmic terms appear in the singu-
lar expansion compatible with (4.8) but the lead-order term and asymptotic order
of the remainder are unchanged. Indeed, now

(4.15) µ[1](z) = τ
Γ(α− 1

2 )
2
√

π
Z−α + O(|Z|−α+ 1

2 )

and consequently

µ[1]
n = σ

Γ(α− 1
2 )

√
2Γ(α)

nα+ 1
2 + O(nα).

Finally we consider α = 1/2. Now, a compatible singular expansion for (4.8) is

r[1](z) ∼ ρ1/2b

2
√

π
Z−1 + (log Z)A+A.

Proceeding as in the case α 6= 1/2 we have the singular expansions

g[1](z) ∼ τ

2ρ
√

π
Z−3/2 + Z−1A+ (Z−1/2 log Z)A+ Z−1/2A+ (log Z)A,

g[1](z) exp
[∫ z

z0

p(t) dt

]
∼ τ

ξρ

1
2
√

π
Z−1 + Z−

1
2A+ (log Z)A+A+ (Z1/2 log Z)A,

A[1](z) ∼ τ

ξ

1
2
√

π
lnZ−1 + L1 + Z1/2A+ ZA+ (Z log Z)A+ (Z3/2 log Z)A,

where

(4.16) L1 :=
∫ ρ

0

{
g[1](t) exp

[∫ t

z0

p(u) du

]
− τ

ξρ

1
2
√

π
(1− ρ−1t)

}
dt + β1.

This leads to

µ[1](z) ∼ τ

2
√

π
Z−1/2 lnZ−1 + ξL1Z

−1/2 + (log Z)A+A+ (Z1/2 log Z)A+ Z1/2A,

so that by singularity analysis and (2.2) we have

µ[1]
n ∼ σ√

2π
n lnn +

[
ξL1

c
√

π
+

σ√
2π

(γ + 2 ln 2)
]

n

+ (n1/2 log n)N + (log n)N +N ,

(4.17)

where σ is defined at (2.3).
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4.2. Higher moments and limiting distributions. We proceed to higher mo-
ments. We will consider separately the cases α > 1/2, α < 1/2, and α = 1/2.
We present the details for α > 1/2 and sketch the main ideas for the other cases.
Throughout α′ := α + 1

2 .

Proposition 4.1. Let α > 1/2 and ε > 0. Then

µ[s](z) = CsZ
−sα′+ 1

2 + O(|Z|−sα′+ 1
2+q),

where

q :=

{
min{α− 1

2 , 1
2} if α 6= 1

1
2 − ε if α = 1

with

C1 = τ
Γ(α− 1

2 )
2
√

π
,

and, for s ≥ 2,
(4.18)

Cs = ρ−1/2b−1

[
1

sα′ − 1

s−1∑
k=1

(
s

k

) (
kα′ − 1

2

)
CkCs−k + sτ

Γ(sα′ − 1)
Γ((s− 1)α′ − 1

2 )
Cs−1

]
.

Proof. The proof is by induction on s. The claim is true for s = 1 by (4.11), (4.12),
and (4.15). Suppose s ≥ 2. We analyze each term in the sum for r[s](z) at (3.5).

If both s2 and s3 are nonzero, then by the induction hypothesis,

z∂zµ
[s2](z) = Cs2

(
s2α

′ − 1
2

)
Z−s2α′− 1

2 + O(|Z|−s2α′− 1
2+q),

so that

z
(
∂zµ

[s2](z)
)

µ[s3](z) = Cs2Cs3

(
s2α

′ − 1
2

)
Z−(s2+s3)α

′
+ O(|Z|−(s2+s3)α

′+q).

Also, µ[s2](z)µ[s3](z) = O(|Z|−(s2+s3)α
′+1). Hence

a1z
(
∂zµ

[s2](z)
)

µ[s3](z) + a0µ
[s2](z)µ[s3](z)

= a1Cs2Cs3

(
s2α

′ − 1
2

)
Z−(s2+s3)α

′
+ O(|Z|−(s2+s3)α

′+q).

Taking the Hadamard product of this expansion with t�s1(z) (using the Zigzag
algorithm again) gives the contribution of such terms to r[s](z) as(

s

s1, s2, s3

)
a1Cs2Cs3

(
s2α

′ − 1
2

)
Γ(sα′ − s1

2 )
Γ((s2 + s3)α′)

Z−(sα′− s1
2 ) + O(|Z|−(sα′− s1

2 )+q).

Notice that if s1 6= 0 the contribution is O(|Z|−sα′+ 1
2 ).

Next consider the case when s2 is nonzero but s3 = 0. By the induction hypoth-
esis and the singular expansion of T at (2.1),

z
(
∂zµ

[s2](z)
)

T (z) = τCs2

(
s2α

′ − 1
2

)
Z−s2α′− 1

2 + O(|Z|−s2α′− 1
2+q).
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Also µ[s2](z)T (z) = O(|Z|−s2α′+ 1
2 ). Hence

a1z
(
∂zµ

[s2](z)
)

T (z) + a0µ
[s2](z)T (z)

= Cs2

(
s2α

′ − 1
2

)
Z−s2α′− 1

2 + O(|Z|−s2α′− 1
2+q).

Taking the Hadamard product of this singular expansion with t�s1(z) we get that
the contribution to r[s](z) from such terms is(

s

s1

)
Cs2

(
s2α

′ − 1
2

)
Γ(sα′ − s1

2 + 1
2 )

Γ(s2α′ + 1
2 )

Z−(sα′− s1
2 + 1

2 ) + O(|Z|−(sα′− s1
2 + 1

2 )+q).

Notice that s1 ≥ 1 and that when s1 > 1 the contribution of such terms is
O(|Z|−sα′+ 1

2 ).
We move on to the case when s2 = 0 but s3 is nonzero. By the induction hypoth-

esis, (2.1), and (2.4), we have T (z)µ[s3](z) = O(|Z|−s3α′+ 1
2 ) and zT ′(z)µ[s3](z) =

O(|Z|−s3α′). Thus

a1zT ′(z)µ[s3](z) + a0T (z)µ[s3](z) = O(|Z|−s3α′).

Taking the Hadamard product with t�s1(z) we see (recalling s1 ≥ 1) that the
contribution to r[s](z) from these terms is O(|Z|−sα′+ 1

2 ).
Finally we consider the case when s2 = s3 = 0. In this case, using (4.6) it is easy

to verify that the contribution to r[s](z) from this term is O(|Z|−sα′+ 1
2 ).

Summing all the contributions we see that

(4.19) r[s](z) = DsZ
−sα′ + O(|Z|−sα′+q),

where

Ds := a1

[
s−1∑
k=1

(
s

k

) (
kα′ − 1

2

)
CkCs−k + sτ

[(s− 1)α′ − 1
2 ]Γ(sα′)

Γ((s− 1)α′ + 1
2 )

Cs−1

]

Thus, using (3.8) and (2.6),

g[s](z) = ρ−3/2a−1
1 b−1DsZ

−sα′− 1
2 + O(|Z|−sα′− 1

2+q),

whence, using (4.4),

g[s](z) exp
[∫ z

z0

p(t) dt

]
= ξ−1ρ−3/2a−1

1 b−1DsZ
−sα′ + O(|Z|−sα′+q).

To get A[s](z) at (3.10) we integrate this singular expansion, noting that since s ≥ 2
and α′ > 1, we have sα′ > 2. Hence

A[s](z) = ξ−1ρ−1/2a−1
1 b−1 Ds

sα′ − 1
Z−sα′+1 + O(|Z|−sα′+1+q).

Now by (3.9) and (4.2),

µ[s](z) = ρ−1/2a−1
1 b−1 Ds

sα′ − 1
Z−sα′+ 1

2 + O(|Z|−sα′+ 1
2+q).



DESTRUCTION OF VERY SIMPLE TREES 13

Taking

Cs = ρ−1/2a−1
1 b−1 Ds

sα′ − 1

=
ρ−1/2b−1

sα′ − 1

[
s−1∑
k=1

(
s

k

) (
kα′ − 1

2

)
CkCs−k + sτ

[(s− 1)α′ − 1
2 ]Γ(sα′)

Γ((s− 1)α′ + 1
2 )

Cs−1

]

= ρ−1/2b−1

[
1

sα′ − 1

s−1∑
k=1

(
s

k

) (
kα′ − 1

2

)
CkCs−k + sτ

Γ(sα′ − 1)
Γ((s− 1)α′ − 1

2 )
Cs−1

]
completes the proof. �

Using singularity analysis we can now derive asymptotics for the moments µ
[s]
n .

Theorem 4.2. Let α > 1/2. Then, as n →∞,

σ−sn−sα′µ[s]
n → ms,

where σ2 := τ2 Φ′′(τ)
Φ(τ) and ms (which does not depend on the very simple family) is

given by

m1 =
Γ(α− 1

2 )
√

2Γ(α)
and, for s ≥ 2,
(4.20)

ms =
1

4
√

π

s−1∑
k=1

(
s

k

)
Γ(kα′ − 1

2 )Γ((s− k)α′ − 1
2 )

Γ(sα′ − 1
2 )

mkms−k +
sΓ(sα′ − 1)√
2Γ(sα′ − 1

2 )
ms−1.

Proof. Using singularity analysis and Proposition 4.1,

ρnµ[s]
n Tn = Cs

nsα′− 3
2

Γ(sα′ − 1
2 )

+ O(nsα′− 3
2−q),

and using the asymptotics of Tn at (2.2),

µ[s]
n =

Cs

cΓ(sα′ − 1
2 )

nsα′ + O(nsα′−q).

Then
σ−sn−sα′µ[s]

n → ms,

where

(4.21) ms := σ−s Cs

cΓ(sα′ − 1
2 )

.

Thus, using 2
√

πcσ =
√

2τ ,

m1 =
C1

cσΓ(α)
=

Γ(α− 1
2 )

√
2Γ(α)

Using (4.18), (4.21), and the identities

cρ−1/2b−1 =
1

2
√

π
, σ−1τρ−1/2b−1 =

1√
2
, Γ(x + 1) = xΓ(x),
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we obtain the following recurrence for ms:
(4.22)

ms =
1

2
√

π

s−1∑
k=1

(
s

k

)
Γ(kα′ + 1

2 )Γ((s− k)α′ − 1
2 )

(sα′ − 1)Γ(sα′ − 1
2 )

mkms−k +
sΓ(sα′ − 1)√
2Γ(sα′ − 1

2 )
ms−1.

To obtain the form of the recurrence in (4.20), write (4.22) in the form

ms =
1

2
√

π

s−1∑
k=1

es,k + ẽs =
1

4
√

π

s−1∑
k=1

(es,k + es,s−k) + ẽs

and simplify. �

Remark 4.3. In going from (4.22) to (4.20) we symmetrized by collecting coefficients
of mkms−k. We might also have symmetrized from the start by choosing the
splitting probabilities as

p̃n,k :=
1
2
(pn,k + pn,n−k).

In the particular case of Cayley trees this leads to the same splitting probabilities
as for the Union–Find recurrence studied in [12, 11, 4].

We can now show convergence in distribution via the method of moments.

Theorem 4.4. Let α > 1/2. Define σ2 := τ2Φ′′(τ)/Φ(τ) and α′ := α + 1
2 . Then,

as n →∞,

σ−1n−α′Xn
L−→ X(α),

with convergence of all moments, where X(α) has the unique distribution whose sth
moment ms ≡ ms(α) is given by

m1 =
Γ(α− 1

2 )
√

2Γ(α)

and for s ≥ 2 by the recurrence (4.20).

Proof. One need only check that the mk’s satisfy Carleman’s condition. This has
already been established in [6]. �

Remark 4.5. It is curious that σ−1n−α′Xn has the same limiting distribution as

σn−α′
∑
v∈T

|Tv|α.

Here T is a random simply generated tree and |Tv| denotes the size of the tree
rooted at a node v. This was established in [5].

For the case 0 < α < 1/2 it is convenient instead to consider the random variable

X̃n := Xn − µn, µ :=
L0ξ

c
√

π
.

[Note that, by (4.13), µn is the lead term in the asymptotics of EXn when α < 1/2.]
Using (3.1),

(4.23) X̃n
L= X̃Kn + X̃∗

n−Kn
+ tn, n ≥ 2; X̃1 = t1 − µ.
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Define µ̃
[s]
n := E X̃s

n and
µ̃[s](z) :=

∑
n≥1

µ̃[s]
n Tnzn.

Then, in analogous fashion, (3.5)–(3.10) hold with µ[s](z) replaced by µ̃[s](z).
Observe that, by (4.11),

(4.24) µ̃[1](z) ∼ τ
Γ(α− 1

2 )
2
√

π
Z−α + (Z−α+ 1

2 + Z−α+1 + 1 + Z1/2)A.

We can use (4.24) and (3.5)–(3.10) to show that Proposition 4.1 holds for α < 1/2
with µ[s](z) replaced by µ̃[s](z) and q changed to 2α− ε, for sufficiently small ε > 0.
It follows then that Xn − µn has (after scaling) a limiting distribution.

Theorem 4.6. Let α < 1/2. Define σ2 := τ2Φ′′(τ)/Φ(τ) and α′ := α + 1
2 . Then,

as n →∞,

σ−1n−α′(Xn − µn) L−→ X(α),

with convergence of all moments, where X(α) has the unique distribution whose sth
moment ms ≡ ms(α) is given for s = 1 by

m1 =
Γ(α− 1

2 )
√

2Γ(α)

and for s ≥ 2 by the recurrence (4.20).

Finally we turn our attention to the case α = 1/2. Now, we define

X̃n := Xn −
σ√
2π

n lnn− δn with δ :=
ξL1

c
√

π
+

σ√
2π

(γ + 2 ln 2),

with L1 defined at (4.16). Then [cf. (3.1)]

X̃n
L= X̃Kn + X̃∗

n−Kn
+ tn,Kn , n ≥ 2,

with X̃1 = 1− δ and

tn,k :=
σ√
2π

[
k ln k + (n− k) ln (n− k)− n lnn +

√
2π

σ
n1/2

]
.

As in the case α < 1/2, it is easily checked that (3.5)–(3.10) hold with µ[s](z)
replaced by µ̃[s](z) and r

[s]
n at (3.4) replaced by

(4.25) r̃[s]
n :=

∑
s1+s2+s3=s

s2,s3<s

(
s

s1, s2, s3

) n−1∑
k=1

pn,kts1
n,kµ̃

[s2]
k µ̃

[s3]
n−k.

The limiting distribution is given by the following result.

Theorem 4.7. As n →∞,

σ−sn−sµ̃[s]
n → ms,

where m0 = 1, m1 = 0, and for s ≥ 2,

ms =
Γ(s− 1)

2
√

πΓ(s− 1
2 )

∑
s1+s2+s3=s

s2,s3<s

(
s

s1, s2, s3

) (
1√
2π

)s1

ms2ms3Js1,s2,s3 ,
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with

Js1,s2,s3 :=
∫ 1

0

[x lnx + (1− x) ln(1− x)]s1xs2− 1
2 (1− x)s3− 3

2 dx.

Consequently

σ−1n−1X̃n
L−→ X(1/2),

where X(1/2) has the unique distribution whose sth moment is given by ms.

Proof sketch. We provide an outline of the proof, leaving the details to the reader.
We claim that it is sufficient to show that

(4.26) ρnµ̃[s]
n Tn = [Cs + o(1)]ns− 3

2 ,

with C0 = c, C1 = 0, and for s ≥ 2,

Cs =
1

b
√

ρ

Γ(s− 1)
Γ(s− 1

2 )

∑
s1+s2+s3=s

s2,s3<s

(
s

s1, s2, s3

) (
σ√
2π

)s1

Cs2Cs3Js1,s2,s3 .

Indeed, defining ms := σ−sc−1Cs and proceeding as in Theorem 4.2 yields the
claim.

To show (4.26), we proceed by induction. The case s = 0 is easily checked, and
the case s = 1 follows from (4.17). For s ≥ 2 we use the induction hypothesis and
approximation of sums by Riemann integrals in (4.25) to get

ρn(n− 1)Tnr̃[s]
n ∼ Dsn

s−1,

where

Ds := a1

∑
s1+s2+s3=s

s2,s3<s

(
s

s1, s2, s3

) (
σ√
2π

)s1

Cs2Cs3Js1,s2,s3 .

Since we know a priori that r̃[s](z) is amenable to singularity analysis it follows that
[cf. (4.19)]

r̃[s](z) ∼ Γ(s)DsZ
−s

and completing the computations as in the proof of Proposition 4.1 yields the proof
of (4.26). �

5. One-sided destruction

5.1. Expectation. We study equation (3.17) for the toll tn = nα with α ≥ 0
and start by establishing a singular expansion for the expectation µ[1](z). Since
µ[0](z) = T (z), we have from (3.14) that

r[1](z) = t(z)�
[
a1zT ′(z)T (z) + a0T

2(z)
]
,

which has already been considered in Section 4.1. In the remaining part of Sec-
tion 5.1, we suppose now α 6∈ { 1

2 , 3
2 , . . .} ∪ {0, 1, 2, . . .}. (The complementary cases

are covered in the proof of Theorem 5.1.) Then a compatible singular expansion
for r[1](z) is available at (4.9). This leads to the expansion (4.10) for g[1](z) and
consequently, using (2.7), to

g[1](z)
T (z)

∼
Γ(α + 1

2 )
2ρ
√

π
Z−α−1 + Z−α− 1

2A+ Z−αA+ Z−1/2A+A.
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Integrating the last expression gives the singular expansion∫ z

0

g[1](t)
T (t)

dt ∼
Γ(α + 1

2 )
2α
√

π
Z−α + Z−α+ 1

2A+ Z−α+1A+A+ Z1/2A.

Now using (3.17), we obtain easily the desired expansion for µ[1](z):

µ[1](z) = T (z)
∫ z

0

g[1](t)
T (t)

dt + t1T (z)

∼
τΓ(α + 1

2 )
2α
√

π
Z−α + Z−α+ 1

2A+ Z−α+1A+A+ Z1/2A.(5.1)

Via singularity analysis, we thus get the following expansion for the coefficients:

ρn[zn]µ[1](z) = ρnµ[1]
n Tn ∼

τΓ(α + 1
2 )

2
√

π Γ(α + 1)
nα−1 + nα− 3

2N + nα−2N + n−3/2N ,

which together with (2.2) yields the full asymptotic expansion

(5.2) µ[1]
n ∼

σΓ(α + 1
2 )

√
2 Γ(α + 1)

nα+ 1
2 + nαN + nα− 1

2N +N ,

with σ defined at (2.3).

5.2. Higher moments and limiting distributions. We state the main result of
this section:

Theorem 5.1. Let α ≥ 0. Define σ := τ
√

Φ′′(τ)
Φ(τ) and α′ := α + 1

2 . Then, for

toll function tn = nα, the moments µ
[s]
n := EY s

n satisfy the following asymptotic
expansion as n →∞:

µ[s]
n =

s!σs

2s/2

s∏
j=1

Γ(jα′)
Γ(jα′ + 1

2 )
nsα′ + O

(
nsα′−q

)
,

with

q :=

{
1
2 − ε if α ∈ {0, 1/2}
min{α, 1/2} otherwise,

where ε > 0 is arbitrarily small. Thus the normalized random variable Yn converges
weakly to a random variable Y (α):

σ−1n−α′Yn
L−→ Y (α),

where Y (α) has the unique distribution with (for s ≥ 1) sth moment

ms =
s!

2s/2

s∏
j=1

Γ(jα′)
Γ(jα′ + 1

2 )
.

In particular when α = 0 (i.e., tn ≡ 1), σn−1/2Yn converges weakly to a standard
Rayleigh distributed random variable Y (0) with density

f(y) = ye−y2/2, y ≥ 0.

In this case the asymptotics of µ
[s]
n can be sharpened to

µ[s]
n =

s!σs
√

π

2s/2Γ( s+1
2 )

ns/2

[
1 + O

(
log n√

n

)]
.
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Proof. We use induction on s. We begin with α > 0. Observe that it is sufficient to
show that the generating functions µ[s](z) admit the asymptotic expansions (5.3)
around their dominant singularities at z = ρ. Then, using singularity analysis, the
claim follows. What we will show is that

(5.3) µ[s](z) =
s!σs−1τ

2
s+1
2 (sα′ − 1

2 )
√

π
γsZ

−sα′+ 1
2 + O

(
|Z|−sα′+ 1

2+q
)
,

where

γs :=

∏s
j=1 Γ(jα′)∏s−1

j=1 Γ(jα′ + 1
2 )

.

First we consider s = 1, where we immediately obtain from the full expan-
sion (5.1) that (5.3) is true for all α 6∈ { 1

2 , 3
2 , . . .} ∪ {1, 2, . . .}. If on the other hand

α ∈ { 1
2 , 3

2 , . . .} ∪ {1, 2, . . .}, then, repeating the computations of Section 5.1, it is
easily seen that logarithmic terms appear in the expansion of µ[1](z). But apart
from the case α = 1

2 , they don’t have an influence on the main term or on the
asymptotic growth order of the second-order term. If α = 1

2 , one observes that the
general formula for the main term holds, but the bound for the remainder term
is different: O(| log Z−1|), not O(1). Summarizing these cases, the expansion (5.3)
holds for s = 1.

Next we assume that (5.3) holds for all 1 ≤ s2 < s with a given s > 1. From (5.3)
follows the expansion

∂zµ
[s2](z) =

s2!σs2−1τ

2
s2+1

2
√

πρ
γs2Z

−s2α′− 1
2 + O

(
|Z|−s2α′− 1

2+q
)
,

which holds for all 1 ≤ s2 < s. Together with µ[0](z) = T (z) and a1τ = 1, this
gives the following singular expansion:

T (z)
(
a1z∂zµ

[s2](z) + a0µ
[s2](z)

)
={

1
2bρ1/2Z−1/2 + O(1), s2 = 0
s2!σ

s2−1τ
2(s2+1)/2√π

γs2Z
−s2α′− 1

2 + O
(
|Z|−s2α′− 1

2+q
)
, 1 ≤ s2 < s.

Under the assumptions s1 + s2 = s and s2 < s, we get via singularity analysis
the expansion

ρn[zn]
(

s

s1

)
t�s1(z)�

[
T (z)

(
a1z∂zµ

[s2](z) + a0µ
[s2](z)

)]
={

cnsα− 1
2 + O

(
nsα−1

)
, s2 = 0(

s
s1

)
s2!σ

s2−1τ
2(s2+1)/2√π

∏s2
j=1

Γ(jα′)

Γ(jα′+ 1
2 )

nsα+
s2−1

2 + O
(
nsα+

s2−1
2 −q

)
, 1 ≤ s2 < s.

Thus under the assumptions given above, the dominant contribution to r[s](z)
is obtained when s2 = s− 1 and s1 = 1, giving the expansion

ρn[zn]r[s](z) =
s!σs−2τ

2s/2
√

π

s−1∏
j=1

Γ(jα′)
Γ(jα′ + 1

2 )
nsα′−1 + O

(
nsα′−1−q

)
,

which in turn yields the following singular expansion for r[s](z):

(5.4) r[s](z) =
s!σs−2τ

2s/2
√

π
γsZ

−sα′ + O
(
|Z|−sα′+q

)
.
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Immediately from (3.16) and (2.6) follow the expansions

g[s](z) =
s!σs−1τ

2(s+1)/2
√

πρ
γsZ

−sα′− 1
2 + O

(
|Z|−sα′− 1

2+q
)

and
g[s](z)
T (z)

=
s!σs−1

2(s+1)/2
√

πρ
γsZ

−sα′− 1
2 + O

(
|Z|−sα′− 1

2+q
)
.

Integrating leads to∫ z

0

g[s](t)
T (t)

dt =
s!σs−1

2(s+1)/2
√

π(sα′ − 1
2 )

γsZ
−sα′+ 1

2 + O
(
|Z|−sα′+ 1

2+q
)
.

Using (3.17) and (2.1), we obtain (5.3) and Theorem 5.1 is proved for α > 0.
The case α = 0 has already been proved in [15], where the distribution has been

characterized by its moments. Therefore we describe only very briefly how to obtain
this result with the present approach.

One need only show by induction the singular behavior

(5.5) µ[s](z)

=


τ
2 lnZ−1 +A+ O

(
|Z1/2 log Z−1|

)
, s = 1,√

2στZ−1/2 + O
(
| log Z−1|2

)
, s = 2,

τ√
π
σs−12(s−1)/2Γ( s

2 + 1)Γ( s−1
2 )Z−(s−1)/2 + O

(
|Z− s

2+1 log Z−1|
)
, s ≥ 3.

The desired result then follows by applying singularity analysis and the duplication
formula for the Γ-function.

To begin the proof of (5.5), first we remark that for s = 1 one proceeds as in
Section 5.1 and gets the full expansion

µ[1](z) =
τ

2
lnZ−1 +A+ (Z1/2 log Z−1)A+ Z1/2A+ (Z log Z−1)A,

which of course gives (5.5) in that case. Assuming that (5.5) holds for 1 ≤ s2 < s
with a given s ≥ 2, we have the singular expansion

∂zµ
[s2](z) =

τ√
πρ

σs2−12(s2−1)/2Γ
(s2

2
+ 1

)
Γ

(
s2 + 1

2

)
Z−(s2+1)/2

+ O
(
|Z−

s2
2 log Z−1|

)
.

Under the restrictions s1 + s2 = s and s2 < s, we obtain via singularity analysis
the expansions

ρn[zn]
{(

s

s1

)
t�s1(z)�

[
T (z)

(
a1z∂zµ

[s2](z) + a0µ
[s2](z)

)]}
=

(
s

s1

)
τ√
π

σs2−12
s2−1

2 Γ
(s2

2
+ 1

)
n

s2−1
2 + O

(
n

s2
2 −1 log n

)
for 1 ≤ s2 < s. [For s2 = 0, an expansion is already available at (4.7).] Under the
given restrictions, the dominant contribution to r[s](z) is obtained when s2 = s− 1
and we obtain the following singular behavior of r[s](z):

r[s](z) =
τ√
π

sσs−22
s
2−1Γ

(
s + 1

2

)
Γ

(s

2

)
Z−s/2 + O

(
|Z−

s−1
2 log Z−1|

)
.
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We proceed with

g[s](z)
T (z)

=
1

ρ
√

π
sσs−12

s−3
2 Γ

(
s + 1

2

)
Γ

(s

2

)
Z−

s+1
2 + O

(
|Z−s/2 log Z−1|

)
,

and, due to (3.17) and (2.1), integrating gives (5.5) for s ≥ 2 and completes the
proof. �
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