Problem 1 (a) By definition

\[\frac{\partial}{\partial x_i} f_\varepsilon(x) = \lim_{\varepsilon \to 0} \frac{f_\varepsilon(x + \varepsilon e_i) - f_\varepsilon(x)}{\varepsilon} \]

\[= \lim_{\varepsilon \to 0} \int d^3r \, G_\varepsilon(r) \left[\frac{f(x + \varepsilon e_i + r) - f(x + r)}{\varepsilon} \right] \]

using the definition of f_ε. Under reasonable assumptions (e.g., if f is uniformly differentiable in a region of radius $\approx \varepsilon$ around x), one can take the limit inside the integral to obtain

\[\frac{\partial}{\partial x_i} f_\varepsilon(x) = \int d^3r \, G_\varepsilon(r) \lim_{\varepsilon \to 0} \left[\frac{f(x + r + \varepsilon e_i) - f(x + r)}{\varepsilon} \right] \]

\[= \int d^3r \, G_\varepsilon(r)(\partial_i f)(x + r). \]

(b) Again using the definition of f_ε,

\[\int d^d x \, f_\varepsilon(x) = \int d^d x \, \int d^3r \, G_\varepsilon(r) f(x + r) \]

\[= \int d^d x \, \int d^d x' \, G_\varepsilon(x - x') f(x') \quad \forall x \equiv x' \]

Under modest assumptions one can commute the x and x'-integrals. For example, this is possible if absolute integrability holds

\[\int d^d x \, \int d^d x' \, |G_\varepsilon(x - x')| f(x') < \infty, \]

which will generally be true. In that case

\[\int d^d x \, f_\varepsilon(x) = \int d^d x' \, f(x') \left[\int d^d x \, G_\varepsilon(x - x') \right]. \]

However, $\int d^d x \, G_\varepsilon(x - x') = 1$ by the normalization condition on G. Thus,

\[\int d^d x \, f_\varepsilon(x) = \int d^d x' \, f(x'). \]
Problem 2. We shall use

\[(f * g)(x) = \int \mathbb{R}^d f(r) g(x-r)\]

\[= \lim_{\Delta r \to 0} \sum_{i=1}^{n} (\Delta r)^d f(r_i) g(x-r_i)\]

where \(\sum_{i=1}^{n} (\Delta r)^d f(r_i) g(x-r_i)\) is a finite Riemann sum which approximates the integral. Now

\[\| \sum_{i=1}^{n} (\Delta r)^d f(r_i) g(\cdot - r_i) \|_p \leq \sum_{i=1}^{n} (\Delta r)^d |f(r_i)| \cdot \|g(\cdot - r_i)\|_p\]

by the triangle inequality. Since the \(L^p\)-norm itself is shift-invariant, \(\|g(\cdot - r_i)\|_p = \|g\|_p\) for all \(i\), and thus

\[\| \sum_{i=1}^{n} (\Delta r)^d f(r_i) g(\cdot - r_i) \|_p \leq \left[\sum_{i=1}^{n} (\Delta r)^d |f(r_i)| \right] \cdot \|g\|_p\]

Taking the limit \(\Delta r \to 0\) and using (or assuming) that the Riemann sum converges to the integral in the \(L^p\)-norm sense,

\[\|f * g\|_p = \lim_{\Delta r \to 0} \| \sum_{i=1}^{n} f(r_i) g(\cdot - r_i) \|_p\]

\[\leq \lim_{\Delta r \to 0} \| \sum_{i=1}^{n} f(r_i) g(\cdot - r_i) \|_p\]

(cont'd)
\[\lim_{\Delta r \to 0} \left(\sum_{i=1}^{n} (\Delta r)^d \cdot |f(x_i)| \right) \cdot \| g \|_p = \int \| f \|_1 \cdot \| g \|_p \]

QED

NOTE: This is not, of course, a rigorous argument according to the standards of mathematics. For example, we assumed without any proof that

\[\lim \| R_n \| = \lim \| R_n \|_p \]

where \(R_n \) is the Riemann sum with \(N \) points. Also, we should use the more general notion of the Lebesgue integral, not the Riemann integral at all. One way to derive the inequality rigorously is to derive first the special cases

\[\| f \cdot g \|_1 \leq \| f \|_1 \cdot \| g \|_1 \]

and

\[\| f \cdot g \|_\infty \leq \| f \|_1 \cdot \| g \|_\infty \]

and then to use a general method called "Riesz-Thorin interpolation" to deduce the general case for \(1 \leq p \leq \infty \). (In fact, the general "Young inequality for convolutions" can be obtained by a second application of Riesz-Thorin interpolation.) The above "proof" should give however an intuitive understanding of the result, as a continuous generalization of the triangle inequality.
Problem 3. (a) Note that

\[E(X_1), E(X_1X_2), E(X_1X_2X_3) \]

are invariant under permutation of their arguments, by commutativity
of ordinary multiplication. Furthermore,

\[C(X_1, X_2) = E(X_1X_2) - E(X_1) \cdot E(X_2) \]

is permutation invariant, since both \(E(X_1X_2) \) and \(E(X_1), E(X_2) \) are so.

The same argument then applies to

\[C(X_1, X_2, X_3) = E(X_1X_2X_3) \]

\[- \left[E(X_1) C(X_2, X_3) + E(X_2) C(X_1, X_3) + E(X_3) C(X_1, X_2) \right] \]

\[- E(X_1) \cdot E(X_2) \cdot E(X_3), \]

since each of the three terms on the right-hand side are now
seen to be permutation invariant.

NOTE: This argument can be generalized to an inductive proof
that all cumulants \(C(X_1, \ldots, X_n) \) are permutation invariant
for every \(n \). However, there are easier proofs!
\(C(x_1 + a_1) = E(x_1 + a_1) \)
\[= \int (x_1 + a_1) dP = \int x_1 dP + a_1 \int dP = E(x_1) + a_1 \]

\[C(x_1 + a_1, x_2 + a_2) = E((x_1 + a_1)(x_2 + a_2)) - E(x_1 + a_1)E(x_2 + a_2) \]
\[= E(x_1 x_2 + a_1 x_2 + a_2 x_1 + a_1 a_2) \]
\[- \left[E(x_1) + a_1 \right] \left[E(x_2) + a_2 \right] \]
\[= \left[E(x_1 x_2) + a_1 E(x_2) + a_2 E(x_1) + a_1 a_2 \right] \]
\[- \left[E(x_1) E(x_2) + a_1 E(x_2) + a_2 E(x_1) + a_1 a_2 \right] \]
\[= E(x_1 x_2) - E(x_1) E(x_2) = C(x_1, x_2) \]

For \(n = 3 \), we use
\[C(x_1 + a_1, x_2 + a_2, x_3 + a_3) = E((x_1 + a_1)(x_2 + a_2)(x_3 + a_3)) \]
\[- E(x_1 + a_1) C(x_2, x_3) - E(x_2 + a_2) C(x_1, x_3) - E(x_3 + a_3) C(x_1, x_2) \]
\[- E(x_1 + a_1) E(x_2 + a_2) E(x_3 + a_3) \]
Then, we use

\[E((X_1 + a_1)(X_2 + a_2)(X_3 + a_3)) \]

\[= E(X_1X_2X_3) + a_1 E(X_2X_3) + a_2 E(X_1X_3) + a_3 E(X_1X_2) \]

\[+ a_1a_2 E(X_3) + a_1a_3 E(X_2) + a_2a_3 E(X_1) + a_1a_2a_3 \]

and

\[E(X_1 + a_1) E(X_2 + a_2) E(X_3 + a_3) \]

\[= E(X_1) E(X_2) E(X_3) + a_1 E(X_1) E(X_2) + a_2 E(X_1) E(X_3) + a_3 E(X_1) E(X_2) \]

\[+ a_1a_2 E(X_3) + a_1a_3 E(X_2) + a_2a_3 E(X_1) + a_1a_2a_3 \]

to set

\[E((X_1 + a_1)(X_2 + a_2)(X_3 + a_3)) - E(X_1 + a_1) E(X_2 + a_2) E(X_3 + a_3) \]

\[= E(X_1X_2X_3) - E(X_1) E(X_2) E(X_3) \]

\[+ a_1 \text{C}(X_1, X_2) + a_2 \text{C}(X_1, X_3) + a_3 \text{C}(X_1, X_2), \]

Finally, we obtain from (1) that

\[\text{C}(X_1 + a_1, X_2 + a_2, X_3 + a_3) = E(X_1X_2X_3) - E(X_1) \text{C}(X_2, X_3) \]

\[- E(X_2) \text{C}(X_1, X_3) - E(X_3) \text{C}(X_1, X_2) \]

\[- E(X_1) E(X_2) E(X_3) = \text{C}(X_1, X_2, X_3), \]

\(\Box \)
Problem 4, (a)

\[\hat{\nabla} \bar{f}(x) = \int d^d r \hat{G}(r) \bar{f}(x + r) \]

\[= \int d^d r \hat{G}(r) \left[\int d^d r' \bar{G}(r') \bar{f}(x + r + r') \right] \]

Now, set

\[r'' = r + r' \]

and write

\[\hat{\nabla} \bar{f}(x) = \int d^d r \hat{G}(r) \int d^d r'' \bar{G}(r'' - r) \bar{f}(x + r'') \]

\[= \int d^d r'' \left[\int d^d r \hat{G}(r) \bar{G}(r'' - r) \right] \bar{f}(x + r'') \]

\[= \left(\hat{\nabla} \ast \bar{G} \right)(r'') \]

by interchanging integrals and using the definition of convolution.

Thus,

\[\hat{\nabla} \bar{G}(r'') = \left(\hat{\nabla} \ast \bar{G} \right)(r'') \]

QED
\[(b) \quad \bar{\sigma}(f,g) = \bar{\tau}_{fg} - \bar{\tau}_{f \bar{g}} \]
\[= \left[\frac{\bar{\tau}_{fg}}{fg} - \frac{\bar{\tau}_{f \bar{g}}}{f \bar{g}} \right] + \left[\frac{\bar{\tau}_{f \bar{g}}}{f \bar{g}} - \frac{\bar{\tau}_{fg}}{fg} \right] \]
\[= \left[\frac{\bar{\tau}_{fg}}{fg} - \frac{\bar{\tau}_{f \bar{g}}}{f \bar{g}} \right] + \left[\frac{\bar{\tau}_{fg}}{fg} - \frac{\bar{\tau}_{f \bar{g}}}{f \bar{g}} \right] \]
\[= \bar{\tau}(f,g) + \bar{\tau}(\bar{f}, \bar{g}) \quad \text{QED} \]

Problem 5. By setting \(i = j \) and dividing by 2 in the evolution equation for stress, one obtains, with \(k_i = \frac{1}{2} T_{ii} \) (no summation on \(i \))

\[\partial_t k_i + \partial_k \left(\frac{1}{2} J_{ii} u \right) = - \bar{u}_i, \bar{u}_i T_{ii} + \tau(p, S_{ii}) \cdot n \left(u_{i+1}, u_{i-1}, \bar{u}_i, \bar{u}_i \right) + \tau(u_i, f_i) \]

The pressure-strain term

\[\tau(p, S_{ii}) = \tau(p, \frac{\partial u_i}{\partial x_i}) \] (no summation on \(i \))

cancels when summed over \(i \)

\[\sum_i \tau(p, S_{ii}) = 0. \]
Thus, there is no net gain or loss of small-scale kinetic energy \(\sum_i \Delta E_i \) by the pressure-strain term, which, instead, simply transfers energy between different components of the velocity. In an anisotropic flow such as a shear flow, this term is usually responsible for the transfer of energy from the "minor component" — which absorbs energy directly from the mean shear — and into the "major components." See Tanneau & Lundley, p. 74.

Problem 6. We shall prove by induction that, for \(r < 1 \),

\[
\frac{\partial^n}{\partial r_1 \ldots \partial r_n} G(r) = \exp \left(-\frac{1}{1-r^2} \right) \frac{P(r)}{(1-r^2)^n}
\]

where \(P(r) \) is a polynomial in the coordinates \(r_1, \ldots, r_n \).

First, for \(n = 1 \)

\[
\frac{\partial}{\partial r_i} G(r) = \exp \left(-\frac{1}{1-r^2} \right) \frac{-2r_i}{(1-r^2)^2}
\]

by the chain rule. This gives the result with \(P(r) = -2r_i \).
Now assume the result for \(n \) and consider

\[
\frac{d^{n+1}}{dr_{n+1} \ldots dr_1} G(r) = \frac{2}{\partial r_{n+1}} \left[\exp \left(-\frac{1}{1-r^2} \right) \frac{P(r)}{(1-r^2)^{2n}} \right]
\]

\[= \exp \left(\frac{-1}{1-r^2} \right) \left[\frac{-2r_{n+1} P(r)}{(1-r^2)^{2(n+1)}} + \frac{2}{\partial r_{n+1}} \frac{P(r)}{(1-r^2)^{2n}} \right]
\]

\[+ P(r) \frac{4nr_{n+1}}{(1-r^2)^{2n+1}} \]

\[= \exp \left(\frac{-1}{1-r^2} \right) \frac{P(r)}{(1-r^2)^{2(n+1)}} \]

with

\[
\bar{P}(r) = -2r_{n+1} P(r) + (1-r^2) \frac{2}{\partial r_{n+1}} P(r) + 4nr_{n+1} (1-r^2) P(r)
\]

a polynomial in the variables. This gives the stated result, by induction.

We now consider the limit from below

\[
\lim_{r \to 1-} \frac{d^{n}}{dr_{n} \ldots dr_1} G(r) = \lim_{r \to 1-} \exp \left(-\frac{1}{1-r^2} \right) \frac{P(r)}{(1-r^2)^{2n}}
\]
One can see that the denominators go to zero

\[(1-r^2)^{2n} \to 0\]

but the numerators go to zero even faster

\[\exp\left(\frac{-1}{1-r^2}\right) \to 0\] faster than any polynomial

This may be shown by l'Hôpital's rule (since the derivatives of \((1-r^2)^{2n}\) becomes constant, but the derivatives of the numerator becomes \(\exp\left(\frac{-1}{1-r^2}\right)\) times a polynomial.)

Another approach is to take logarithms and to note that

\[
\ln\left[\exp\left(\frac{-1}{1-r^2}\right) \frac{P(r)}{(1-r^2)^{2n}} \right]
\]

\[= \frac{-1}{1-r^2} + \ln P(r) - 2n \ln (1-r^2)\]

\[\to -\infty \text{ as } r \to 1^-\]

Since the term \(\frac{-1}{1-r^2}\) is the largest in magnitude, from all of these arguments, we see that
\[
\lim_{r \to 1^- \partial r_1 \ldots \partial r_n} G(r) = 0
\]

for all integers \(n \). Thus, the definition

\[
G(r) = \begin{cases}
\exp \left(\frac{-1}{1-r^2} \right) & r < 1 \\
0 & r \geq 1
\end{cases}
\]

has all \(n \)th derivatives continuous at \(r = 1 \). Clearly, \(G(r) \) is \(C^\infty \) for \(r < 1 \) and \(r \geq 1 \). Thus, we have proved that \(G(r) \) is \(C^\infty \) for all values of \(r \).

\[QED\]
Problem 7. (a) Observing as in the classnotes that

\[2 \nu (\nabla \cdot \mathbf{v}) = \nu \nabla_j (\partial_i u_j + \partial_j u_i) \]
\[= \nu \left(0 + \partial_j^2 u_i \right) = \nu (\Delta \mathbf{v}) \cdot \mathbf{i} \]

we see that the two forms of the momentum equation

\[\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla \mathbf{p} + \nu \Delta \mathbf{v} \]

and

\[\partial_t \mathbf{v} + \nabla \cdot (\nu \mathbf{v} + p \mathbf{I} - 2\nu \mathbf{S}) = 0 \]

are equivalent for smooth solutions with the condition \(\nabla \cdot \mathbf{v} = 0 \). These two equations thus also imply the kinetic energy balance equation as discussed in the classnotes

\[\partial_t \left(\frac{1}{2} |\mathbf{v}|^2 \right) + \nabla \cdot \left(\left(\frac{1}{2} |\mathbf{v}|^2 + p \right) \mathbf{v} - 2\nu \mathbf{S} \cdot \mathbf{v} \right) = -2\nu |\mathbf{S}|^2 \]
\[= -\varepsilon. \]

Writing the Fourier temperature equation in the form

\[\partial_t (c_p T) + \nabla \cdot (c_p T \mathbf{v} - (k/k_p) \nabla T) = \varepsilon, \]

we see that the sum of the last two equations gives

\[\partial_t \left(\frac{1}{2} |\mathbf{v}|^2 + c_p T \right) + \nabla \cdot \left[\left(\frac{1}{2} |\mathbf{v}|^2 + c_p T + p \right) \mathbf{v} \right. \]
\[\left. - 2\nu \mathbf{S} \cdot \mathbf{v} - (k/k_p) \nabla T \right] = 0 \]

in conservation form.
On the other hand, the conservation equation (3) for total energy per mass \(\frac{1}{2}|\mathbf{v}|^2 + c_p T \) minus the equation (1) for kinetic energy per mass gives the equation (2) which is equivalent to the temperature equation

\[
\eta T + (\mathbf{v} \cdot \nabla) T = \lambda + \Delta T + \frac{e}{c_p}.
\]

Thus, the two systems of equations are entirely equivalent.

(b) We can evaluate the term involving \(K \) as

\[
\nabla \cdot \left[\frac{(K/p \nabla T)}{\epsilon} \right] = -\frac{1}{\epsilon p} \int d\mathbf{r} \left(\nabla G \right)_\epsilon(\mathbf{r}) K(\mathbf{x} + \mathbf{r}) \nabla T(\mathbf{x} + \mathbf{r})
\]

\[
= -\frac{1}{\epsilon p} \int d\mathbf{r} \sum_{\text{supp} G_\epsilon(\mathbf{r})} \sqrt{K(\mathbf{x} + \mathbf{r})}

\left(\nabla G \right)_\epsilon(\mathbf{r}) \times \sqrt{K(\mathbf{x} + \mathbf{r})} \nabla T(\mathbf{x} + \mathbf{r})
\]

so that applying Cauchy-Schwarz inequality gives

\[
\left| \nabla \cdot \left[\frac{(K/p \nabla T)}{\epsilon} \right] \right| \leq \frac{1}{\epsilon p} \int d\mathbf{r} \sum_{\text{supp} G_\epsilon(\mathbf{r})} \sqrt{K(\mathbf{x} + \mathbf{r})}

\times \sqrt{\int d^3 r \left(\nabla G \right)_\epsilon(\mathbf{r})^2 K(\mathbf{x} + \mathbf{r}) |\nabla T(\mathbf{x} + \mathbf{r})|^2}
\]
If we assume that, for fixed \(l \),

\[
\int_{\text{supp} \mathcal{G}_l} d^d r \ k(x+r) \to 0
\]

with

\[
\int d^3 x \ \varphi(x) \ k(x) \ |\nabla T(x)|^2
\]

remaining finite for compactly-supported, \(C^\infty \) functions \(\varphi \),
then we see that, for fixed \(l \),

\[
|\nabla \cdot \left[(k/p) \nabla T \right]_{\mathcal{G}_l}(x) | \to 0.
\]

In a similar fashion, the term

\[
\nabla \cdot \left[2(\mathbf{v} \cdot \mathbf{S}) \right]_l = -\frac{1}{l} \int d^d r \ (\nabla G)_l(r) \cdot \mathbf{v}(x+r)
\]

\[
\cdot \mathbf{S}(x+r) \mathbf{v}(x+r)
\]

\[
= -\frac{1}{l} \int d^d r \ \frac{1}{\text{supp} \mathcal{G}_l(r)} \sqrt{\mathbf{v}(x+r)^T \mathbf{v}(x+r)}
\]

\[
\times \sqrt{\mathbf{v}(x+r)^T \mathbf{S} : \mathbf{v}(x+r)} (d \cdot \mathcal{G})_l(r).
\]

Applying Cauchy–Schwartz again with the above factorization of the integrand yields
\[
\left| \nabla \cdot \left[\frac{2(\mathbf{v} \cdot \mathbf{v})}{2} \mathbf{v} \right] (x) \right| \leq \frac{1}{\ell} \sqrt{\int_{\text{supp} G} \int d^d r \ |\mathbf{v}(x+r)|^2 \left(\mathbf{v}(x+r) \cdot \mathbf{v}(x+r) \right)}
\times \sqrt{\int d^d r \ |(\nabla G)(\mathbf{r})|^2 \left(\mathbf{v}(x+r) \cdot \mathbf{S}(x+r) \right)}^2.
\]

Thus, assuming that
\[
(\star) \quad \int d^d r \ \mathbf{v}(x+r) \cdot \mathbf{v}(x+r) \to 0 \quad \text{supp} G
\]
and that \[\int d^d x \ \mathbb{G}(x) \mathbf{v}(x) \cdot \mathbf{S}(x) \to \text{finite} \] remains finite for smooth, compactly supported test functions, we see that
\[
\left| \nabla \cdot \left[\frac{2(\mathbf{v} \cdot \mathbf{v})}{2} \mathbf{v} \right] (x) \right| \to 0.
\]

Note that \((\star)\) follows because
\[
\int d^d r \ \mathbf{v}(x+r) \cdot \mathbf{v}(x+r) \to \left[\sup_{\mathbf{r} \in \text{supp} G} \mathbf{v}(x+r) \right] \int d^d r \ |\mathbf{v}(x+r)|^2
\]
with total kinetic energy \[\int d^d r \ |\mathbf{v}(x+r)|^2 \to \text{finite} \quad \text{and supp} \mathbf{v}(x+r) \to 0, \quad \text{re} \text{ suppg} \]